Exemple #1
0
 /// <summary>
 /// Detect the keypoints from the image
 /// </summary>
 /// <param name="detector">The keypoint detector</param>
 /// <param name="image">The image to extract keypoints from</param>
 /// <param name="mask">The optional mask.</param>
 /// <returns>An array of key points</returns>
 public static MKeyPoint[] Detect(this IFeatureDetector detector, IInputArray image, IInputArray mask = null)
 {
     using (VectorOfKeyPoint keypoints = new VectorOfKeyPoint())
     {
         detector.DetectRaw(image, keypoints, mask);
         return(keypoints.ToArray());
     }
 }
        public static bool TestFeature2DTracker(IFeatureDetector keyPointDetector, IDescriptorExtractor descriptorGenerator)
        {
            //for (int k = 0; k < 1; k++)
            {
                Feature2D feature2D = null;
                if (keyPointDetector == descriptorGenerator)
                {
                    feature2D = keyPointDetector as Feature2D;
                }

                Image <Gray, Byte> modelImage = EmguAssert.LoadImage <Gray, byte>("box.png");
                //Image<Gray, Byte> modelImage = new Image<Gray, byte>("stop.jpg");
                //modelImage = modelImage.Resize(400, 400, true);

                //modelImage._EqualizeHist();

                #region extract features from the object image
                Stopwatch        stopwatch      = Stopwatch.StartNew();
                VectorOfKeyPoint modelKeypoints = new VectorOfKeyPoint();
                Mat modelDescriptors            = new Mat();
                if (feature2D != null)
                {
                    feature2D.DetectAndCompute(modelImage, null, modelKeypoints, modelDescriptors, false);
                }
                else
                {
                    keyPointDetector.DetectRaw(modelImage, modelKeypoints);
                    descriptorGenerator.Compute(modelImage, modelKeypoints, modelDescriptors);
                }
                stopwatch.Stop();
                EmguAssert.WriteLine(String.Format("Time to extract feature from model: {0} milli-sec", stopwatch.ElapsedMilliseconds));
                #endregion

                //Image<Gray, Byte> observedImage = new Image<Gray, byte>("traffic.jpg");
                Image <Gray, Byte> observedImage = EmguAssert.LoadImage <Gray, byte>("box_in_scene.png");
                //Image<Gray, Byte> observedImage = modelImage.Rotate(45, new Gray(0.0));
                //image = image.Resize(400, 400, true);

                //observedImage._EqualizeHist();
                #region extract features from the observed image
                stopwatch.Reset();
                stopwatch.Start();
                VectorOfKeyPoint observedKeypoints = new VectorOfKeyPoint();
                using (Mat observedDescriptors = new Mat())
                {
                    if (feature2D != null)
                    {
                        feature2D.DetectAndCompute(observedImage, null, observedKeypoints, observedDescriptors, false);
                    }
                    else
                    {
                        keyPointDetector.DetectRaw(observedImage, observedKeypoints);
                        descriptorGenerator.Compute(observedImage, observedKeypoints, observedDescriptors);
                    }

                    stopwatch.Stop();
                    EmguAssert.WriteLine(String.Format("Time to extract feature from image: {0} milli-sec", stopwatch.ElapsedMilliseconds));
                    #endregion

                    //Merge the object image and the observed image into one big image for display
                    Image <Gray, Byte> res = modelImage.ConcateVertical(observedImage);

                    Rectangle rect = modelImage.ROI;
                    PointF[]  pts  = new PointF[] {
                        new PointF(rect.Left, rect.Bottom),
                        new PointF(rect.Right, rect.Bottom),
                        new PointF(rect.Right, rect.Top),
                        new PointF(rect.Left, rect.Top)
                    };

                    HomographyMatrix homography = null;

                    stopwatch.Reset();
                    stopwatch.Start();

                    int          k  = 2;
                    DistanceType dt = modelDescriptors.Depth == CvEnum.DepthType.Cv8U ? DistanceType.Hamming : DistanceType.L2;
                    //using (Matrix<int> indices = new Matrix<int>(observedDescriptors.Rows, k))
                    //using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
                    using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
                        using (BruteForceMatcher matcher = new BruteForceMatcher(dt))
                        {
                            matcher.Add(modelDescriptors);
                            matcher.KnnMatch(observedDescriptors, matches, k, null);

                            Matrix <byte> mask = new Matrix <byte>(matches.Size, 1);
                            mask.SetValue(255);
                            Features2DToolbox.VoteForUniqueness(matches, 0.8, mask);

                            int nonZeroCount = CvInvoke.CountNonZero(mask);
                            if (nonZeroCount >= 4)
                            {
                                nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeypoints, observedKeypoints, matches, mask, 1.5, 20);
                                if (nonZeroCount >= 4)
                                {
                                    homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeypoints, observedKeypoints, matches, mask, 2);
                                }
                            }
                        }
                    stopwatch.Stop();
                    EmguAssert.WriteLine(String.Format("Time for feature matching: {0} milli-sec", stopwatch.ElapsedMilliseconds));

                    bool success = false;
                    if (homography != null)
                    {
                        PointF[] points = pts.Clone() as PointF[];
                        homography.ProjectPoints(points);

                        for (int i = 0; i < points.Length; i++)
                        {
                            points[i].Y += modelImage.Height;
                        }

                        res.DrawPolyline(
#if NETFX_CORE
                            Extensions.
#else
                            Array.
#endif
                            ConvertAll <PointF, Point>(points, Point.Round), true, new Gray(255.0), 5);

                        success = true;
                    }
                    //Emgu.CV.UI.ImageViewer.Show(res);
                    return(success);
                }



                /*
                 * stopwatch.Reset(); stopwatch.Start();
                 * //set the initial region to be the whole image
                 * using (Image<Gray, Single> priorMask = new Image<Gray, float>(observedImage.Size))
                 * {
                 * priorMask.SetValue(1.0);
                 * homography = tracker.CamShiftTrack(
                 *    observedFeatures,
                 *    (RectangleF)observedImage.ROI,
                 *    priorMask);
                 * }
                 * Trace.WriteLine(String.Format("Time for feature tracking: {0} milli-sec", stopwatch.ElapsedMilliseconds));
                 *
                 * if (homography != null) //set the initial tracking window to be the whole image
                 * {
                 * PointF[] points = pts.Clone() as PointF[];
                 * homography.ProjectPoints(points);
                 *
                 * for (int i = 0; i < points.Length; i++)
                 *    points[i].Y += modelImage.Height;
                 * res.DrawPolyline(Array.ConvertAll<PointF, Point>(points, Point.Round), true, new Gray(255.0), 5);
                 * return true;
                 * }
                 * else
                 * {
                 * return false;
                 * }*/
            }
        }