/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false) { using IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention"); int seqLenQ = inputQ.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections var weightedQKV = g.View(g.Affine(inputQNorm, QKV, QKVb), dims: new long[] { batchSize, seqLenQ, 3, m_multiHeadNum, m_d }); var allQ = g.Select(weightedQKV, 2, 0); var allK = g.Select(weightedQKV, 2, 1); var allV = g.Select(weightedQKV, 2, 2); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenQ }); IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); // Scaled softmax float scale = 1.0f / (float)(Math.Sqrt(m_d)); var attn = g.MulBatch(Qs, Ks, scale); attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenQ }); if (keyMask != null) { attn = g.Add(attn, keyMask, inPlace: true); } var attnProbs = g.Softmax(attn, inPlace: true); IWeightTensor sumAttnWeights = null; if (outputAttenWeights) { //Merge all attention probs over multi-heads sumAttnWeights = graph.Sum(attnProbs, 1); sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum); sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenQ }); } attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenQ }); IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); IWeightTensor result = graph.Add(finalAttResults, inputQ, inPlace: true); return(result, sumAttnWeights); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false, Dictionary <string, IWeightTensor> cachedTensors = null) { string keyName = $"{m_name}_MultiHeadAttention"; using IComputeGraph g = graph.CreateSubGraph(keyName); int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = null; IWeightTensor Vs = null; if (cachedTensors == null) // We don't use any cached tensors { IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); } else { string KsCacheName = keyName + "_" + nameof(Ks); string VsCacheName = keyName + "_" + nameof(Vs); if (cachedTensors.ContainsKey(KsCacheName) == false) { IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); cachedTensors.Add(KsCacheName, Ks.CopyWeightsRef(KsCacheName, Ks.NeedGradient)); } else { Ks = cachedTensors[KsCacheName]; } if (cachedTensors.ContainsKey(VsCacheName) == false) { IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); cachedTensors.Add(VsCacheName, Vs.CopyWeightsRef(VsCacheName, Vs.NeedGradient)); } else { Vs = cachedTensors[VsCacheName]; } } // Scaled softmax float scale = 1.0f / (float)(Math.Sqrt(m_d)); var attn = g.MulBatch(Qs, Ks, scale); attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK }); if (keyMask != null) { attn = g.Add(attn, keyMask, inPlace: true); } var attnProbs = g.Softmax(attn, inPlace: true); IWeightTensor sumAttnWeights = null; if (outputAttenWeights) { sumAttnWeights = g.Select(attnProbs, 1, 0); for (int i = 1; i < m_multiHeadNum; i++) { var tmp = g.Select(attnProbs, 1, i); sumAttnWeights = g.Add(sumAttnWeights, tmp); } sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum); sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenK }); } attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK }); IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); IWeightTensor result = graph.Add(finalAttResults, inputQ, inPlace: true); return(result, sumAttnWeights); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); if (inputK == inputQ) { inputK = inputQNorm; } if (inputV == inputQ) { inputV = inputQNorm; } //Input projections float scale = 1.0f; IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); // Scaled softmax scale = 1.0f / (float)(Math.Sqrt(m_d)); IWeightTensor attn = g.MulBatch(Qs, Ks, batchSize * m_multiHeadNum, scale); if (keyMask != null) { using (var keyMaskView = g.View(keyMask, runGradient: false, dims: new long[] { batchSize, 1, seqLenQ, seqLenK })) { using (var keyMaskViewExp = g.Expand(keyMaskView, runGradient: false, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK })) { using (var keyMaskViewExpConti = g.AsContiguous(keyMaskViewExp, runGradient: false)) { using (var keyMaskViewExpContiView = g.View(keyMaskViewExpConti, runGradient: false, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK })) { attn = g.Add(attn, keyMaskViewExpContiView, runGradient1: true, runGradient2: false); } } } } } IWeightTensor softmax = g.Softmax(attn, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, batchSize * m_multiHeadNum), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }