/// <summary> /// Gets the underlaying tensor instance. /// </summary> /// <returns></returns> public Tensor GetTensor() { if (UnderlayingTensor == null) { UnderlayingTensor = K.CreateVariable(UnderlayingVariable.Data <float>(), Shape); } return(UnderlayingTensor); }
/// <summary> /// Generates output predictions for the input samples. /// </summary> /// <param name="x">The input data frame to run prediction.</param> /// <returns></returns> public Tensor Predict(DataFrame x) { List <float> predictions = new List <float>(); Tensor output = x.GetTensor(); foreach (var layer in Layers) { if (layer.SkipPred) { continue; } layer.Forward(output); output = layer.Output; } predictions.AddRange(output.ToArray().Cast <float>()); return(K.CreateVariable(predictions.ToArray(), output.Shape)); }