Exemple #1
0
        public void Dispose()
        {
            m_Process   = null;
            m_Allocator = null;

            GC.SuppressFinalize(this);
        }
Exemple #2
0
 public Tensor(IAllocator allocator, DType elementType, long[] sizes, long[] strides)
 {
     this.sizes         = sizes;
     this.strides       = strides;
     this.storageOffset = 0;
     this.storage       = allocator.Allocate(elementType, TensorDimensionHelpers.GetStorageSize(sizes, strides));
 }
        public WeightTensor(int rows, int columns, int deviceId, bool normal = false)
        {
            DeviceId  = deviceId;
            allocator = TensorAllocator.Allocator(DeviceId);

            Rows    = rows;
            Columns = columns;
            var n = rows * columns;

            float[] weight = new float[n];


            var scale = (float)Math.Sqrt(1.0 / (rows * columns));

            if (normal)
            {
                scale = 0.08f;
            }
            for (int i = 0; i < n; i++)
            {
                weight[i] = RandomGenerator.NormalRandom(0.0f, scale);
            }

            TGradient = new Tensor(allocator, DType.Float32, Rows, Columns);
            Ops.Fill(TGradient, 0.0f);

            TWeight = Tensor.FromArray(allocator, weight).View(Rows, Columns);
        }
Exemple #4
0
        public Conv2Layer(IAllocator allocator, SeedSource seedSource, DType elementType, int batchSize, int inputWidth, int inputHeight, int nInputPlane, int nOutputPlane, ConvolutionDesc2d cd)
        {
            this.cd = cd;

            this.weight = new NDArray(allocator, elementType, nOutputPlane, nInputPlane * cd.kW * cd.kH);
            this.bias   = new NDArray(allocator, elementType, nOutputPlane, 1);

            this.gradWeight = new NDArray(allocator, elementType, this.weight.Shape);
            this.gradBias   = new NDArray(allocator, elementType, this.bias.Shape);

            inputSizes     = new long[] { batchSize, nInputPlane, inputHeight, inputWidth };
            this.gradInput = new NDArray(allocator, elementType, inputSizes);

            outputSizes     = SpatialConvolutionMM.OutputSize(inputSizes, weight.Shape, cd);
            this.activation = new NDArray(allocator, elementType, outputSizes);



            this.OutputSizes = outputSizes;

            var stdv = 1.0f / (float)Math.Sqrt(cd.kW * cd.kH * nInputPlane);

            Ops.RandomUniform(weight, seedSource, -stdv, stdv);
            Ops.RandomUniform(bias, seedSource, -stdv, stdv);
        }
Exemple #5
0
        public ClassNLLCriterion(IAllocator allocator, int batchSize, int nClasses)
        {
            this.allocator = allocator;

            this.output    = new NDArray(allocator, DType.Float32, 1);
            this.gradInput = new NDArray(allocator, DType.Float32, batchSize, nClasses);
        }
Exemple #6
0
        public static Tensor Constant(float value, IAllocator allocator, DType dtype, params long[] sizes)
        {
            Tensor tensor = new Tensor(allocator, dtype, sizes);

            TOps.Fill(tensor, value);
            return(tensor);
        }
Exemple #7
0
        public WeightTensor(long[] sizes, int deviceId, string name = "", bool isTrainable = false, bool normal = false)
        {
            Name        = name;
            DeviceId    = deviceId;
            IsTrainable = isTrainable;
            allocator   = TensorAllocator.Allocator(DeviceId);

            Sizes = sizes;

            if (normal)
            {
                var     n      = Rows * Columns;
                float[] weight = new float[n];


                var scale = (float)Math.Sqrt(1.0 / (Rows * Columns));
                if (normal)
                {
                    scale = 0.08f;
                }
                for (int i = 0; i < n; i++)
                {
                    weight[i] = RandomGenerator.NormalRandom(0.0f, scale);
                }

                TGradient = new Tensor(allocator, DType.Float32, Sizes);
                Ops.Fill(TGradient, 0.0f);

                TWeight = Tensor.FromArray(allocator, weight).View(Sizes);
            }
        }
Exemple #8
0
        private void Init(PythonContext inPython, string stubPath, IAllocator inAllocator)
        {
            this.GIL       = new Lock();
            this.python    = inPython;
            this.allocator = inAllocator;

            this.importNames.Push("");
            this.importFiles.Push(null);

            this.CreateScratchModule();
            this.kindaDictProxy = this.CreateFromSnippet(CodeSnippets.KINDA_DICT_PROXY_CODE, "KindaDictProxy");

            if (stubPath != null)
            {
                this.stub = new StubReference(stubPath);
                this.stub.Init(new dgt_getfuncptr(this.GetFuncPtr), new dgt_registerdata(this.RegisterData));

                string path    = Environment.GetEnvironmentVariable("PATH");
                string newpath = path + ";" + Path.Combine(Path.GetDirectoryName(stubPath), "support");
                Environment.SetEnvironmentVariable("PATH", newpath);

                this.ReadyBuiltinTypes();
                this.importer       = new PydImporter();
                this.removeSysHacks = this.CreateFromSnippet(CodeSnippets.INSTALL_IMPORT_HOOK_CODE, "remove_sys_hacks");

                // TODO: load builtin modules only on demand?
                this.stub.LoadBuiltinModule("posix");
                this.stub.LoadBuiltinModule("mmap");
                this.stub.LoadBuiltinModule("_csv");
            }
            this.alive = true;
        }
Exemple #9
0
        public Conv2Cudnn(IAllocator allocator, SeedSource seedSource, DType elementType, int batchSize, int inputWidth, int inputHeight, int nInputPlane, int nOutputPlane, ConvolutionDesc2d cd)
            : base(allocator, seedSource, elementType, batchSize, inputWidth, inputHeight, nInputPlane, nOutputPlane, cd)
        {
            // Reshape weight and bias - CuDNN expects the dimensions to be structured slightly differently
            this.weight     = ViewReplace(this.weight, nOutputPlane, nInputPlane, cd.kH, cd.kW);
            this.bias       = ViewReplace(this.bias, 1, nOutputPlane, 1, 1);
            this.gradWeight = ViewReplace(this.gradWeight, this.weight.Shape);
            this.gradBias   = ViewReplace(this.gradBias, this.bias.Shape);


            var fwdWorkspace = DNN.GetConvolutionForwardWorkspaceSize(allocator, fwdAlgo, cd,
                                                                      new TensorShape(elementType, new long[] { batchSize, nInputPlane, inputHeight, inputWidth }),
                                                                      new TensorShape(weight),
                                                                      new TensorShape(activation));

            var bwdFilterWorkspace = DNN.GetConvolutionBackwardFilterWorkspaceSize(allocator, bwdFilterAlgo, cd,
                                                                                   new TensorShape(elementType, new long[] { batchSize, nInputPlane, inputHeight, inputWidth }),
                                                                                   new TensorShape(activation),
                                                                                   new TensorShape(weight));

            var bwdFilterInputWorkspace = DNN.GetConvolutionBackwardDataWorkspaceSize(allocator, bwdDataAlgo, cd,
                                                                                      new TensorShape(weight),
                                                                                      new TensorShape(activation),
                                                                                      new TensorShape(elementType, new long[] { batchSize, nInputPlane, inputHeight, inputWidth }));

            var workspaceSize = Math.Max(Math.Max(fwdWorkspace, bwdFilterWorkspace), bwdFilterInputWorkspace);

            this.workspace = (CudaStorage)allocator.Allocate(DType.UInt8, workspaceSize);
        }
Exemple #10
0
        public static DataSet BuildSet(IAllocator allocator, DigitImage[] images)
        {
            var inputs  = new NDArray(allocator, DType.Float32, images.Length, MnistParser.ImageSize, MnistParser.ImageSize);
            var outputs = new NDArray(allocator, DType.Float32, images.Length, MnistParser.LabelCount);

            var cpuAllocator = new TensorSharp.Cpu.CpuAllocator();

            for (int i = 0; i < images.Length; ++i)
            {
                var target = inputs.TVar().Select(0, i);

                Variable.FromArray(images[i].pixels, cpuAllocator)
                .AsType(DType.Float32)
                .ToDevice(allocator)
                .Evaluate(target);

                target.Div(255)
                .Evaluate(target);
            }


            Ops.FillOneHot(outputs, MnistParser.LabelCount, images.Select(x => (int)x.label).ToArray());
            var targetValues = NDArray.FromArray(allocator, images.Select(x => (float)x.label).ToArray());

            return(new DataSet()
            {
                inputs = inputs, targets = outputs, targetValues = targetValues
            });
        }
Exemple #11
0
        public static NDArray Constant(float value, IAllocator allocator, DType dtype, params long[] sizes)
        {
            NDArray tensor = new NDArray(allocator, dtype, sizes);

            TOps.Fill(tensor, value);
            return(tensor);
        }
Exemple #12
0
        public static long GetConvolutionBackwardDataWorkspaceSize(IAllocator allocator, DNNConvolutionBwdDataAlgo algo, Cpu.ConvolutionDesc2d cd, TensorShape w, TensorShape dy, TensorShape dx)
        {
            if (!(allocator is CudaAllocator))
            {
                throw new InvalidOperationException("allocator must be a CUDA allocator");
            }

            var cudaAllocator = (CudaAllocator)allocator;

            using (var dnn = cudaAllocator.Context.DNNForDevice(cudaAllocator.DeviceId))
            {
                var convDesc = GetConvDescriptor(cd, w.ElementType);

                using (var wDesc = GetFilterDescriptor(w))
                    using (var dyDesc = GetDescriptor(dy))
                        using (var dxDesc = GetDescriptor(dx))
                        {
                            return(dnn.Value.GetConvolutionBackwardDataWorkspaceSize(
                                       wDesc,
                                       dyDesc,
                                       convDesc,
                                       dxDesc,
                                       (cudnnConvolutionBwdDataAlgo)algo));
                        }
            }
        }
Exemple #13
0
 public PagedObjectPool(IAllocator allocator)
 {
     _memory    = allocator;
     _objectMap = new List <NativeArray <T> >();
     _freeIds   = new NativeStack <uint>(_memory, OBJECTS_PER_POOL);
     AddPage();
 }
        public static AllocationHandle Take <T>(this IAllocator it, int count)
            where T : unmanaged
        {
            var size = SizeOf <T> .Size;

            return(it.Take(size * count));
        }
Exemple #15
0
 public FillExpression(IAllocator allocator, DType elementType, long[] sizes, Action <Tensor> fillAction)
 {
     this.allocator   = allocator;
     this.elementType = elementType;
     this.sizes       = sizes;
     this.fillAction  = fillAction;
 }
Exemple #16
0
        // Constructs a convolutional network with two convolutional layers,
        // two fully-connected layers, ReLU units and a softmax on the output.
        public static void BuildCnn(IAllocator allocator, SeedSource seedSource, int batchSize, bool useCudnn, out Sequential model, out ICriterion criterion, out bool outputIsClassIndices)
        {
            var inputWidth  = MnistParser.ImageSize;
            var inputHeight = MnistParser.ImageSize;

            var elementType = DType.Float32;

            var inputDims = new long[] { batchSize, 1, inputHeight, inputWidth };

            model = new Sequential();
            model.Add(new ViewLayer(inputDims));

            var outSize = AddCnnLayer(allocator, seedSource, elementType, model, inputDims, 20, useCudnn);

            outSize = AddCnnLayer(allocator, seedSource, elementType, model, outSize, 40, useCudnn);

            var convOutSize = outSize[1] * outSize[2] * outSize[3];

            model.Add(new ViewLayer(batchSize, convOutSize));

            var hiddenSize = 1000;
            var outputSize = 10;

            model.Add(new DropoutLayer(allocator, seedSource, elementType, 0.5f, batchSize, convOutSize));
            model.Add(new LinearLayer(allocator, seedSource, elementType, (int)convOutSize, hiddenSize, batchSize));
            model.Add(new ReLULayer(allocator, elementType, batchSize, hiddenSize));

            model.Add(new DropoutLayer(allocator, seedSource, elementType, 0.5f, batchSize, hiddenSize));
            model.Add(new LinearLayer(allocator, seedSource, elementType, hiddenSize, outputSize, batchSize));
            model.Add(LayerBuilder.BuildLogSoftMax(allocator, elementType, batchSize, outputSize, useCudnn));

            criterion            = new ClassNLLCriterion(allocator, batchSize, outputSize);
            outputIsClassIndices = true; // output of criterion is class indices
        }
Exemple #17
0
        public Allocation(IAllocator allocator, int offset, int count)
        {
            _allocator = allocator;

            Offset = offset;
            Count = count;
        }
 public EntityChunkList(ILoggerFactory logFactory, IAllocator allocator, EntitySpec specification, int specIndex)
 {
     _logFactory   = logFactory;
     _logger       = logFactory.CreateLogger <EntityChunkList>();
     _allocator    = allocator;
     Specification = specification;
     SpecIndex     = specIndex;
 }
Exemple #19
0
 protected static IColumnStream CreateColumnStream(ICodecFullStream codec, IAllocator allocator, int bufLen)
 {
     return(new ColumnStreamFullStream <ColumnMemoryStream, ICodecFullStream>(
                new ColumnMemoryStream(),
                codec,
                allocator,
                bufLen));
 }
 public void Dispose()
 {
     if (Old != null)
     {
         Allocator.SetAllocator(Old);
     }
     Old = null;
 }
Exemple #21
0
 public AllocatorBuffer(IAllocator <A, P, U> allocator, int blockLength, int index, int initialCounts = 100)
 {
     this.initialCounts = initialCounts;
     this.blockLength   = blockLength;
     this.totalBlocks   = 0;
     this.Index         = index;
     this.allocator     = allocator;
 }
Exemple #22
0
 //TODO: Should we really clear to zero by default?
 //the EntityChunk should be managing out of bounds indexing and moving of data
 public StackAllocator(IAllocator allocator, int size, bool thrash = false)
 {
     _allocator = allocator;
     _handle    = allocator.Take(size);
     _free      = (uint)size;
     _dataPtr   = _handle.Address;
     _thrash    = thrash;
 }
Exemple #23
0
        public Conv2Cuda(IAllocator allocator, SeedSource seedSource, DType elementType, int batchSize, int inputWidth, int inputHeight, int nInputPlane, int nOutputPlane, ConvolutionDesc2d cd)
            : base(allocator, seedSource, elementType, batchSize, inputWidth, inputHeight, nInputPlane, nOutputPlane, cd)
        {
            var finputSizes = TensorSharp.CUDA.SpatialConvolution.FInputSize(inputSizes, outputSizes, cd);

            this.finput     = new NDArray(allocator, elementType, finputSizes);
            this.fgradInput = new NDArray(allocator, elementType, finputSizes);
        }
Exemple #24
0
        /// <summary>
        /// Converts to device.
        /// </summary>
        /// <param name="device">The device.</param>
        /// <returns>TVar.</returns>
        public NDArray ToDevice(IAllocator device)
        {
            if (Storage.Allocator.GetType().Name == device.GetType().Name)
            {
                return(this);
            }

            return(new Variable(new ToDeviceExpression(this.TVar().Expression, device)).Evaluate());
        }
Exemple #25
0
        public CudaStorage(IAllocator allocator, TSCudaContext tsContext, CudaContext context, DType ElementType, long elementCount)
            : base(allocator, ElementType, elementCount)
        {
            TSContext    = tsContext;
            this.context = context;

            bufferHandle = tsContext.AllocatorForDevice(DeviceId).Allocate(ByteLength);
            deviceBuffer = bufferHandle.Pointer;
        }
Exemple #26
0
        public RenderCommandBuffer(IAllocator allocator, GraphicsDevice device)
        {
            _buffer = new NativeBuffer(allocator);
            _device = device;

            _defaultEffect = new BasicEffect(_device);
            _defaultEffect.TextureEnabled     = true;
            _defaultEffect.VertexColorEnabled = true;
        }
Exemple #27
0
        public static Compiler Create(Block romData, IAllocator allocator, IEnumerable <IModule> modules)
        {
            Compiler compiler = new Compiler();

            compiler._romData   = romData;
            compiler._allocator = allocator;
            compiler._modules   = modules;
            return(compiler);
        }
        public void Setup()
        {
            _logFactory = LoggerFactory.Create(builder =>
            {
                builder.AddConsole();
            });

            _memory = new HeapAllocator(_logFactory);
        }
Exemple #29
0
        public SystemManager(ILoggerFactory logFactory, EntityManager em, IAllocator allocator)
        {
            _logFactory    = logFactory;
            _logger        = logFactory.CreateLogger <SystemManager>();
            _entityManager = em;
            _allocator     = allocator;

            DefaultStage = "Default";
            _variables   = new NativeBuffer(allocator);
        }
 public EntityPool(ILoggerFactory logFactory, IAllocator allocator)
 {
     _logFactory = logFactory;
     _logger     = _logFactory.CreateLogger <EntityPool>();
     _memory     = allocator;
     _freeIds    = new NativeStack <uint>(_memory, ENTITIES_PER_POOL);
     _entityMap  = new List <NativeArray <Entity> >();
     //AddPage();
     Take();
 }
Exemple #31
0
 public TimeSeriesRecorder(
     string symbol,
     ITimeSeriesDbUpdater dbUpdater,
     IAllocator allocator)
 {
     _symbol    = symbol;
     _dbUpdater = dbUpdater;
     _allocator = allocator;
     _buffer    = allocator.Allocate(Natives.MAX_ENTRY_SIZE);
 }
		public BodyCollisionFunctor(PhysicsManager manager)
		{
			_manager = manager;
			_taskManager = TaskManager.Current;

			int threads = TaskManager.ThreadCount;

			_alloc = new IAllocator<ContactConstraint>[threads];
			_items = new List<ContactConstraint>[threads];
			_contact = new ContactConstraint[threads];
			_a = new Part[threads];
			_b = new Part[threads];

			for (int i = 0; i < threads; i++)
			{
				_alloc[i] = new ContactConstraint.Allocator(manager.Game, manager.ContactPoolCapacity, 2, manager.MaxPointsPerContact);
				_items[i] = new List<ContactConstraint>();
			}

			_fastSpeedSquared = manager.SweepThresholdSquared;
		}
        private static ManagedPointer Insert(Bitmap toInsert, Color[] palette, int blockAdded, bool compressed, 
            IROM rom, IAllocator<ManagedPointer> allocator)
        {
            var bytes = GBAGraphics.ToGBARaw(toInsert, palette, GraphicsMode.Tile4bit);

            int insertedLength;
            int bytesAdded = blockAdded * 32;

            if (compressed)
            {
                bytes = LZ77.Compress(bytes, 0, bytes.Length - bytesAdded);
                insertedLength = bytes.Length;
            }
            else
            {
                insertedLength = bytes.Length - bytesAdded;
            }

            var ptr = allocator.Allocate(insertedLength, 4);
            if (!ptr.IsNull)
            {
                rom.WriteData(ptr, bytes, 0, insertedLength);
            }

            return ptr;
        }
Exemple #34
0
 public bool CanAllocate(IAllocator allocator, Specification spec)
 {
     return spec.ResourceType == "Folder" &&
         Directory.Exists("C:\\Workspace");
 }
Exemple #35
0
 public async Task<IResource> Allocate(IAllocator allocator, Specification spec)
 {
     var directory = new DirectoryInfo("C:\\Workspace");
     return new FolderResource(directory.CreateSubdirectory("FolderAllocation_" + RandomString()));
 }
Exemple #36
0
 public bool CanLease(IAllocator allocator, Specification spec)
 {
     return spec.ResourceType == "Folder" && !LeasedOut;
 }
 protected BaseAllocatorTest(IAllocator allocator)
 {
     _allocator = allocator;
 }
        /// <summary>
        /// Initialize the physics implementation.
        /// </summary>
        public override void Initialize()
        {
            base.Initialize();

            if (_broadPhase == null)
                _broadPhase = new SweepAndPrune();

            _islandAlloc = new Pool<Island>(_islandPoolCapacity, 2);
            _contacts = new BodyCollisionFunctor(this);
            _contactCache = new ContactCache(new ContactCache.Allocator(_contactPoolCapacity, 2, _maxPointsPerContact));
            _taskManager = TaskManager.Current;

            _generators.Add(_gravityForce);
        }
Exemple #39
0
 public async Task<ILease> Lease(IAllocator allocator, Specification spec)
 {
     LeasedOut = true;
     _folderLease = new FolderLease(this, Directory);
     return _folderLease;
 }
Exemple #40
0
        private void Init(PythonContext inPython, string stubPath, IAllocator inAllocator)
        {
            this.GIL = new Lock();
            this.python = inPython;
            this.allocator = inAllocator;

            this.importNames.Push("");
            this.importFiles.Push(null);

            this.CreateScratchModule();
            this.kindaDictProxy = this.CreateFromSnippet(CodeSnippets.KINDA_DICT_PROXY_CODE, "KindaDictProxy");

            if (stubPath != null)
            {
                this.stub = new StubReference(stubPath);
                this.stub.Init(new dgt_getfuncptr(this.GetFuncPtr), new dgt_registerdata(this.RegisterData));

                string path = Environment.GetEnvironmentVariable("PATH");
                string newpath = path + ";" + Path.Combine(Path.GetDirectoryName(stubPath), "support");
                Environment.SetEnvironmentVariable("PATH", newpath);

                this.ReadyBuiltinTypes();
                this.importer = new PydImporter();
                this.removeSysHacks = this.CreateFromSnippet(CodeSnippets.INSTALL_IMPORT_HOOK_CODE, "remove_sys_hacks");

                // TODO: load builtin modules only on demand?
                this.stub.LoadBuiltinModule("posix");
                this.stub.LoadBuiltinModule("mmap");
                this.stub.LoadBuiltinModule("_csv");
            }
            this.alive = true;
        }
Exemple #41
0
 public PythonMapper(PythonContext python, string stubPath, IAllocator allocator)
 {
     this.Init(python, stubPath, allocator);
 }
Exemple #42
0
 public PythonMapper(CodeContext context, string stubPath, IAllocator allocator)
     : this(context.LanguageContext, stubPath, allocator)
 {
 }
Exemple #43
0
 public PythonMapper(CodeContext context, IAllocator allocator)
     : this(context, null, allocator)
 {
 }
 /// <summary>
 /// 
 /// </summary>
 /// <param name="picture"></param>
 /// <param name="allocator"></param>
 /// <param name="rom"></param>
 /// <returns>
 /// first is main portrait offset, 
 /// second is miniportrait, 
 /// third is palette and
 /// fourth is mouth frames if separate
 /// </returns>
 public static CanCauseError<ManagedPointer[]> WriteData(Bitmap picture,
     IAllocator<ManagedPointer> allocator, IROM rom)
 {
     var format = GetFormat(rom.GameCode);
     return WriteData(format, picture, allocator, rom);
 }
        /// <summary>
        /// 
        /// </summary>
        /// <param name="picture"></param>
        /// <param name="format"></param>
        /// <param name="allocator"></param>
        /// <param name="rom"></param>
        /// <returns>
        /// first is main portrait offset, 
        /// second is miniportrait, 
        /// third is palette and
        /// fourth is mouth frames if separate
        /// </returns>
        private static CanCauseError<ManagedPointer[]> WriteData(PortraitFormat format, Bitmap picture, 
            IAllocator<ManagedPointer> allocator, IROM rom)
        {
            List<ManagedPointer> pointers = new List<ManagedPointer>(4);

            //Get palette
            Color[] palette;
            bool palettedBitmap = picture.PixelFormat.HasFlag(PixelFormat.Indexed);
            if (!palettedBitmap)
            {
                var colors = picture.GetColors();
                colors = GBAPalette.GetGBAColors(colors);
                if (colors.Count > 16)
                {
                    return CanCauseError<ManagedPointer[]>.Error("Over 16 colours.");
                }
                palette = colors.ToArray();
            }
            else
            {
                palette = picture.Palette.Entries;
            }

            //Split to separate portraits
            Bitmap mainPortrait = new Bitmap(
                format.PortraitSize.Width,
                format.PortraitSize.Height, picture.PixelFormat);

            Move(picture, mainPortrait, format.PictureMapping);

            Bitmap mouthbm;
            if (format.SeparateMouthFrames)
            {
                mouthbm = new Bitmap(format.MouthSize.Width, format.MouthSize.Height, picture.PixelFormat);
            }
            else
            {
                mouthbm = mainPortrait;
            }

            Move(picture, mouthbm, format.MouthMapping);

            Bitmap mini = new Bitmap(format.MiniSize.Width, format.MiniSize.Height, picture.PixelFormat);

            Move(picture, mouthbm, format.MiniMapping);

            //Write data
            pointers.Add(Insert(mainPortrait, palette, format.BlockAdd, format.CompressedPortrait, rom, allocator));

            pointers.Add(Insert(mini, palette, 0, format.CompressedMini, rom, allocator));

            byte[] rawPalette = GBAPalette.toRawGBAPalette(palette);
            var ptr = allocator.Allocate(rawPalette.Length, 4);
            if (!ptr.IsNull)
            {
                rom.WriteData(ptr, rawPalette, 0, rawPalette.Length);
            }
            pointers.Add(ptr);

            if (mouthbm != mainPortrait)
            {
                pointers.Add(Insert(mouthbm, palette, 0, true, rom, allocator));
            }

            return pointers.ToArray();
        }