Exemple #1
0
        /// <summary>
        ///   Constructs a new Hidden Markov Model.
        /// </summary>
        /// <param name="symbols">The number of output symbols used for this model.</param>
        /// <param name="states">The number of states for this model.</param>
        /// <param name="type">The topology which should be used by this model.</param>
        public HiddenMarkovModel(int symbols, int states, HiddenMarkovModelType type)
            : this(null, null, states, type)
        {
            if (symbols <= 0)
            {
                throw new ArgumentOutOfRangeException("symbols",
                                                      "Number of symbols should be higher than zero.");
            }

            this.symbols = symbols;
            this.B       = new double[states, symbols];

            // Initialize B with uniform probabilities
            for (int i = 0; i < states; i++)
            {
                for (int j = 0; j < symbols; j++)
                {
                    B[i, j] = 1.0 / symbols;
                }
            }
        }
Exemple #2
0
        /// <summary>
        ///   Constructs a new Hidden Markov Model Sequence Classifier.
        /// </summary>
        public MarkovSequenceClassifier(int classes, int symbols, int[] states, String[] names, HiddenMarkovModelType type)
        {
            models = new HiddenMarkovModel[classes];

            // For each of the possible output classes
            for (int i = 0; i < classes; i++)
            {
                // Create a Hidden Markov Models with the given number of symbols and states
                models[i] = new HiddenMarkovModel(symbols, states[i], type);

                if (names != null)
                {
                    models[i].Tag = names[i];
                }
            }
        }
Exemple #3
0
        /// <summary>
        ///   Constructs a new Hidden Markov Model.
        /// </summary>
        private HiddenMarkovModel(double[,] transitions, double[] probabilities, int?states, HiddenMarkovModelType type)
        {
            // Automatically determine missing parameters

            #region Number of states N
            if (states != null)
            {
                if (states <= 0)
                {
                    throw new ArgumentOutOfRangeException("states",
                                                          "Number of states should be higher than zero.");
                }
            }
            else
            {
                if (probabilities != null)
                {
                    states = probabilities.Length;
                }
                else if (transitions != null)
                {
                    states = transitions.GetLength(0);
                }
                else
                {
                    throw new ArgumentException("Number of states could not be determined.",
                                                "states");
                }
            }

            int n = states.Value;
            this.states = n;
            #endregion

            #region Transitions Matrix A
            if (transitions != null)
            {
                if (transitions.GetLength(0) != states)
                {
                    throw new ArgumentException(
                              "Transition matrix should have the same dimensions as the number of model states.",
                              "transitions");
                }

                if (transitions.GetLength(0) != transitions.GetLength(1))
                {
                    throw new ArgumentException("Transition matrix should be square.", "transitions");
                }
            }
            else
            {
                if (type == HiddenMarkovModelType.Ergodic)
                {
                    // Create A using uniform distribution
                    transitions = new double[n, n];
                    for (int i = 0; i < n; i++)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            transitions[i, j] = 1.0 / n;
                        }
                    }
                }
                else
                {
                    // Create A using uniform distribution,
                    //   without allowing backward transitions.
                    transitions = new double[n, n];
                    for (int i = 0; i < n; i++)
                    {
                        for (int j = i; j < n; j++)
                        {
                            transitions[i, j] = 1.0 / (n - i);
                        }
                    }
                }
            }

            this.A = transitions;
            #endregion

            #region Initial Probabilities pi
            if (probabilities != null)
            {
                if (probabilities.Length != n)
                {
                    throw new ArgumentException(
                              "Initial probabilities should have the same length as the number of model states.",
                              "probabilities");
                }
            }
            else
            {
                // Create pi as left-to-right
                probabilities    = new double[n];
                probabilities[0] = 1.0;
            }

            this.pi = probabilities;
            #endregion
        }
        /// <summary>
        ///   Constructs a new Hidden Markov Model.
        /// </summary>
        private HiddenMarkovModel(double[,] transitions, double[] probabilities, int? states, HiddenMarkovModelType type)
        {
            // Automatically determine missing parameters

            #region Number of states N
            if (states != null)
            {
                if (states <= 0)
                {
                    throw new ArgumentOutOfRangeException("states",
                        "Number of states should be higher than zero.");
                }
            }
            else
            {
                if (probabilities != null)
                {
                    states = probabilities.Length;
                }
                else if (transitions != null)
                {
                    states = transitions.GetLength(0);
                }
                else
                {
                    throw new ArgumentException("Number of states could not be determined.",
                        "states");
                }
            }

            int n = states.Value;
            this.states = n;
            #endregion

            #region Transitions Matrix A
            if (transitions != null)
            {
                if (transitions.GetLength(0) != states)
                    throw new ArgumentException(
                        "Transition matrix should have the same dimensions as the number of model states.",
                        "transitions");

                if (transitions.GetLength(0) != transitions.GetLength(1))
                    throw new ArgumentException("Transition matrix should be square.", "transitions");
            }
            else
            {


                if (type == HiddenMarkovModelType.Ergodic)
                {
                    // Create A using uniform distribution
                    transitions = new double[n, n];
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < n; j++)
                            transitions[i, j] = 1.0 / n;
                }
                else
                {
                    // Create A using uniform distribution,
                    //   without allowing backward transitions.
                    transitions = new double[n, n];
                    for (int i = 0; i < n; i++)
                        for (int j = i; j < n; j++)
                            transitions[i, j] = 1.0 / (n - i);
                }
            }

            this.A = transitions;
            #endregion

            #region Initial Probabilities pi
            if (probabilities != null)
            {
                if (probabilities.Length != n)
                    throw new ArgumentException(
                        "Initial probabilities should have the same length as the number of model states.",
                        "probabilities");
            }
            else
            {
                // Create pi as left-to-right
                probabilities = new double[n];
                probabilities[0] = 1.0;
            }

            this.pi = probabilities;
            #endregion

        }
        /// <summary>
        ///   Constructs a new Hidden Markov Model.
        /// </summary>
        /// <param name="symbols">The number of output symbols used for this model.</param>
        /// <param name="states">The number of states for this model.</param>
        /// <param name="type">The topology which should be used by this model.</param>
        public HiddenMarkovModel(int symbols, int states, HiddenMarkovModelType type)
            : this(null, null, states, type)
        {
            if (symbols <= 0)
            {
                throw new ArgumentOutOfRangeException("symbols",
                    "Number of symbols should be higher than zero.");
            }

            this.symbols = symbols;
            this.B = new double[states, symbols];

            // Initialize B with uniform probabilities
            for (int i = 0; i < states; i++)
                for (int j = 0; j < symbols; j++)
                    B[i, j] = 1.0 / symbols;
        }
        /// <summary>
        ///   Constructs a new Hidden Markov Model Sequence Classifier.
        /// </summary>
        public MarkovSequenceClassifier(int classes, int symbols, int[] states, String[] names, HiddenMarkovModelType type)
        {
            models = new HiddenMarkovModel[classes];

            // For each of the possible output classes
            for (int i = 0; i < classes; i++)
            {
                // Create a Hidden Markov Models with the given number of symbols and states
                models[i] = new HiddenMarkovModel(symbols, states[i], type);

                if (names != null) models[i].Tag = names[i];
            }
        }