public static void Write8Bit(BinaryFile wavfile, double[][] sound, int samplecount, int channels)
    {
        int    i  = 0;
        int    ic = 0;
        double val;
        byte   @byte = new byte();

                #if DEBUG
        Console.Write("Write8Bit...\n");
                #endif

        for (i = 0; i < samplecount; i++)
        {
            for (ic = 0; ic < channels; ic++)
            {
                val = GlobalMembersUtil.RoundOff((sound[ic][i] + 1.0) * 128.0);

                if (val > 255)
                {
                    val = 255;
                }
                if (val < 0)
                {
                    val = 0;
                }

                @byte = (byte)val;

                wavfile.Write(@byte);
            }
        }
    }
    public static void Write32Bit(BinaryFile wavfile, double[][] sound, int samplecount, int channels)
    {
        int    i  = 0;
        int    ic = 0;
        double val;

                #if DEBUG
        Console.Write("Write32Bit...\n");
                #endif

        for (i = 0; i < samplecount; i++)
        {
            for (ic = 0; ic < channels; ic++)
            {
                val = GlobalMembersUtil.RoundOff(sound[ic][i] * 2147483648.0);

                if (val > 2147483647.0)
                {
                    val = 2147483647.0;
                }
                if (val < -2147483648.0)
                {
                    val = -2147483648.0;
                }

                wavfile.Write((int)val);
            }
        }
    }
Exemple #3
0
    /// <summary>
    /// Get Settings from User Input or Config file
    /// </summary>
    /// <param name="bands">Specifies the desired height of the spectrogram (bands)</param>
    /// <param name="samplecount">Number of samples</param>
    /// <param name="samplerate">Sample rate</param>
    /// <param name="basefreq">Base frequency in Hertz</param>
    /// <param name="maxfreq">Maximum frequency in Hertz</param>
    /// <param name="pixpersec">Time resolution in Pixels Per Second</param>
    /// <param name="bandsperoctave">Frequency resolution in Bands Per Octave</param>
    /// <param name="Xsize">Specifies the desired width of the spectrogram</param>
    /// <param name="mode">0 = Analysis mode, 1 = Synthesis mode</param>
    public static void SettingsInput(ref int bands, ref int samplecount, ref int samplerate, ref double basefreq, ref double maxfreq, ref double pixpersec, ref double bandsperoctave, ref int Xsize, int mode)
    {
        /* mode :
         * 0 = Analysis mode
         * 1 = Synthesis mode
         */
        int    i = 0;
        double gf;
        double f;
        double trash;
        double ma;          // maximum allowed frequency
        int    unset   = 0; // count of unset interdependant settings
        int    set_min = 0;
        int    set_max = 0;
        int    set_bpo = 0;
        int    set_y   = 0;
        int    set_pps = 0;
        int    set_x   = 0;

                #if DEBUG
        Console.Write("settingsinput...\n");
                #endif

        // Path to the configuration file
        string     configFileName = "arss.conf";
        TextReader freqcfg        = null;
        if (File.Exists(configFileName))
        {
            freqcfg = new StreamReader(configFileName);
        }

        if (samplerate == 0)         // if we're in synthesis mode and that no samplerate has been defined yet
        {
            if (GlobalMembersUtil.quiet)
            {
                Console.Error.WriteLine("Please provide a sample rate for your output sound.\nUse --sample-rate (-r).\nExiting with error.\n");
                Environment.Exit(1);
            }
            //********Output settings querying********

            Console.Write("Sample rate [44100] : ");         // Query for a samplerate
            samplerate = (int)GlobalMembersUtil.GetFloat();
            if (samplerate == 0 || samplerate < -2147483647) // The -2147483647 check is used for the sake of compatibility with C90
            {
                samplerate = 44100;                          // Default value
            }
            //--------Output settings querying--------
        }

        if (basefreq != 0)         // count unset interdependant frequency-domain settings
        {
            set_min = 1;
        }

        if (maxfreq != 0)
        {
            set_max = 1;
        }

        if (bandsperoctave != 0)
        {
            set_bpo = 1;
        }

        if (bands != 0)
        {
            set_y = 1;
        }

        unset = set_min + set_max + set_bpo + set_y;

        if (unset == 4)         // if too many settings are set
        {
            if (mode == 0)
            {
                Console.Error.WriteLine("You have set one parameter too many.\nUnset either --min-freq (-min), --max-freq (-max), --bpo (-b)\nExiting with error.\n");
            }
            if (mode == 1)
            {
                Console.Error.WriteLine("You have set one parameter too many.\nUnset either --min-freq (-min), --max-freq (-max), --bpo (-b) or --height (-y)\nExiting with error.\n");
            }
            Environment.Exit(1);
        }

        if (pixpersec != 0)
        {
            set_pps = 1;
        }

        if (Xsize != 0)
        {
            set_x = 1;
        }

        if (set_x + set_pps == 2 && mode == 0)
        {
            Console.Error.WriteLine("You cannot define both the image width and the horizontal resolution.\nUnset either --pps (-p) or --width (-x)\nExiting with error.\n");
            Environment.Exit(1);
        }

        if (freqcfg != null)         // load settings from file if it exists
        {
            if (basefreq == 0)       // load values from it if they haven't been set yet
            {
                basefreq = double.Parse(freqcfg.ReadLine());
            }
            else
            {
                trash = double.Parse(freqcfg.ReadLine());
            }

            if (maxfreq == 0)
            {
                maxfreq = double.Parse(freqcfg.ReadLine());
            }
            else
            {
                trash = double.Parse(freqcfg.ReadLine());
            }

            if (bandsperoctave == 0)
            {
                bandsperoctave = double.Parse(freqcfg.ReadLine());
            }
            else
            {
                trash = double.Parse(freqcfg.ReadLine());
            }

            if (pixpersec == 0)
            {
                pixpersec = double.Parse(freqcfg.ReadLine());
            }
            else
            {
                trash = double.Parse(freqcfg.ReadLine());
            }
        }
        else
        {
            if (basefreq == 0)             // otherwise load default values
            {
                basefreq = 27.5;
            }
            if (maxfreq == 0)
            {
                maxfreq = 20000;
            }
            if (bandsperoctave == 0)
            {
                bandsperoctave = 12;
            }
            if (pixpersec == 0)
            {
                pixpersec = 150;
            }
        }
        if (freqcfg != null)
        {
            freqcfg.Close();
        }

        if (unset < 3 && set_min == 0)
        {
            if (GlobalMembersUtil.quiet)
            {
                Console.Error.WriteLine("Please define a minimum frequency.\nUse --min-freq (-min).\nExiting with error.\n");
                Environment.Exit(1);
            }
            Console.Write("Min. frequency (Hz) [{0:f3}]: ", basefreq);
            gf = GlobalMembersUtil.GetFloat();
            if (gf != 0)
            {
                basefreq = gf;
            }
            unset++;
            set_min = 1;
        }
        basefreq /= samplerate;         // turn basefreq from Hz to fractions of samplerate

        if (unset < 3 && set_bpo == 0)
        {
            if (GlobalMembersUtil.quiet)
            {
                Console.Error.WriteLine("Please define a bands per octave setting.\nUse --bpo (-b).\nExiting with error.\n");
                Environment.Exit(1);
            }
            Console.Write("Bands per octave [{0:f3}]: ", bandsperoctave);
            gf = GlobalMembersUtil.GetFloat();
            if (gf != 0)
            {
                bandsperoctave = gf;
            }
            unset++;
            set_bpo = 1;
        }

        if (unset < 3 && set_max == 0)
        {
            i = 0;
            do
            {
                i++;
                f = basefreq * Math.Pow(GlobalMembersDsp.LOGBASE, (i / bandsperoctave));
            }while (f < 0.5);

            ma = basefreq * Math.Pow(GlobalMembersDsp.LOGBASE, ((i - 2) / bandsperoctave)) * samplerate;           // max allowed frequency

            if (maxfreq > ma)
            {
                if (GlobalMembersUtil.FMod(ma, 1.0) == 0.0)
                {
                    maxfreq = ma;                     // replaces the "Upper frequency limit above Nyquist frequency" warning
                }
                else
                {
                    maxfreq = ma - GlobalMembersUtil.FMod(ma, 1.0);
                }
            }

            if (mode == 0)             // if we're in Analysis mode
            {
                if (GlobalMembersUtil.quiet)
                {
                    Console.Error.WriteLine("Please define a maximum frequency.\nUse --max-freq (-max).\nExiting with error.\n");
                    Environment.Exit(1);
                }
                Console.Write("Max. frequency (Hz) (up to {0:f3}) [{1:f3}]: ", ma, maxfreq);
                gf = GlobalMembersUtil.GetFloat();
                if (gf != 0)
                {
                    maxfreq = gf;
                }

                if (maxfreq > ma)
                {
                    if (GlobalMembersUtil.FMod(ma, 1.0) == 0.0)
                    {
                        maxfreq = ma;                         // replaces the "Upper frequency limit above Nyquist frequency" warning
                    }
                    else
                    {
                        maxfreq = ma - GlobalMembersUtil.FMod(ma, 1.0);
                    }
                }
            }

            unset++;
            set_max = 1;
        }

        if (set_min == 0)
        {
            basefreq = Math.Pow(GlobalMembersDsp.LOGBASE, (bands - 1) / bandsperoctave) * maxfreq;           // calculate the lower frequency in Hz
            Console.Write("Min. frequency : {0:f3} Hz\n", basefreq);
            basefreq /= samplerate;
        }

        if (set_max == 0)
        {
            maxfreq = Math.Pow(GlobalMembersDsp.LOGBASE, (bands - 1) / bandsperoctave) * (basefreq * samplerate);           // calculate the upper frequency in Hz
            Console.Write("Max. frequency : {0:f3} Hz\n", maxfreq);
        }

        if (set_y == 0)
        {
            bands = 1 + (int)GlobalMembersUtil.RoundOff(bandsperoctave * (GlobalMembersUtil.Log(maxfreq) - GlobalMembersUtil.Log(basefreq * samplerate)));
            Console.Write("Bands : {0:D}\n", bands);
        }

        if (set_bpo == 0)
        {
            if (GlobalMembersDsp.LOGBASE == 1.0)
            {
                bandsperoctave = maxfreq / samplerate;
            }
            else
            {
                bandsperoctave = (bands - 1) / (GlobalMembersUtil.Log(maxfreq) - GlobalMembersUtil.Log(basefreq * samplerate));
            }
            Console.Write("Bands per octave : {0:f3}\n", bandsperoctave);
        }

        if (set_x == 1 && mode == 0)                                              // If we're in Analysis mode and that X is set (by the user)
        {
            pixpersec = (double)Xsize * (double)samplerate / (double)samplecount; // calculate pixpersec
            Console.Write("Pixels per second : {0:f3}\n", pixpersec);
        }

        if ((mode == 0 && set_x == 0 && set_pps == 0) || (mode == 1 && set_pps == 0))         // If in Analysis mode none are set or pixpersec isn't set in Synthesis mode
        {
            if (GlobalMembersUtil.quiet)
            {
                Console.Error.WriteLine("Please define a pixels per second setting.\nUse --pps (-p).\nExiting with error.\n");
                Environment.Exit(1);
            }
            Console.Write("Pixels per second [{0:f3}]: ", pixpersec);
            gf = GlobalMembersUtil.GetFloat();
            if (gf != 0)
            {
                pixpersec = gf;
            }
        }

        basefreq *= samplerate;                                   // turn back to Hz just for the sake of writing to the file

        TextWriter freqcfgOut = new StreamWriter(configFileName); // saving settings to a file

        if (freqcfgOut == null)
        {
            Console.Error.WriteLine("Cannot write to configuration file");
            Environment.Exit(1);
        }
        freqcfgOut.WriteLine(basefreq);
        freqcfgOut.WriteLine(maxfreq);
        freqcfgOut.WriteLine(bandsperoctave);
        freqcfgOut.WriteLine(pixpersec);
        freqcfgOut.Close();

        basefreq  /= samplerate;        // basefreq is now in fraction of the sampling rate instead of Hz
        pixpersec /= samplerate;        // pixpersec is now in fraction of the sampling rate instead of Hz
    }
Exemple #4
0
    /// <summary>
    /// Noise synthesis mode
    /// </summary>
    /// <param name="d">Image</param>
    /// <param name="Xsize">Specifies the desired width of the spectrogram</param>
    /// <param name="bands">Specifies the desired height of the spectrogram (bands)</param>
    /// <param name="samplecount">Number of samples</param>
    /// <param name="samplerate">Sample rate</param>
    /// <param name="basefreq">Base frequency in Hertz</param>
    /// <param name="pixpersec">Time resolution in Pixels Per Second</param>
    /// <param name="bpo">Frequency resolution in Bands Per Octave</param>
    /// <returns></returns>
    public static double[] SynthesizeNoise(ref double[][] d, ref int Xsize, ref int bands, ref int samplecount, ref int samplerate, ref double basefreq, ref double pixpersec, ref double bpo)
    {
        double[] s;                                                             // final signal
        double   coef;

        double[] noise;                                 // filtered looped noise
        double   loop_size_sec = LOOP_SIZE_SEC;         // size of the filter bank loop, in seconds. Later to be taken from user input
        int      loop_size     = 0;                     // size of the filter bank loop, in samples. Deduced from loop_size_sec
        int      loop_size_min = 0;                     // minimum required size for the filter bank loop, in samples. Calculated from the longest windowed sinc's length

        double[] pink_noise;                            // original pink noise (in the frequency domain)
        double   mag;                                   // parameters for the creation of pink_noise's samples
        double   phase;

        double[] envelope; // interpolated envelope
        double[] lut;      // Blackman Sqaure look-up table
        double[] freq;     // frequency look-up table
        double   maxfreq;  // central frequency of the last band

        int i  = 0;        // general purpose iterator
        int ib = 0;        // bands iterator
        int il = 0;        // loop iterator

        int Fa = 0;        // Fa is the index of the band's start in the frequency domain
        int Fd = 0;        // Fd is the index of the band's end in the frequency domain

        double La;         // La is the log2 of the frequency of Fa
        double Ld;         // Ld is the log2 of the frequency of Fd
        double Li;         // Li is the iterative frequency between La and Ld defined logarithmically

        freq = GlobalMembersDsp.FrequencyArray(basefreq, bands, bpo);

        if (LOGBASE == 1.0)
        {
            maxfreq = bpo;             // in linear mode we use bpo to store the maxfreq since we couldn't deduce maxfreq otherwise
        }
        else
        {
            maxfreq = basefreq * Math.Pow(LOGBASE, ((double)(bands - 1) / bpo));
        }

        clockA = GlobalMembersUtil.GetTime();

        samplecount = (int)GlobalMembersUtil.RoundOff(Xsize / pixpersec);        // calculation of the length of the final signal
        Console.Write("Sound duration : {0:f3} s\n", (double)samplecount / samplerate);

        // allocation of the final signal
        s = new double[samplecount];

        // allocation of the interpolated envelope
        envelope = new double[samplecount];

        //********Loop size calculation********
        loop_size = (int)loop_size_sec * samplerate;

        if (LOGBASE == 1.0)
        {
            loop_size_min = (int)GlobalMembersUtil.RoundOff(4.0 * 5.0 / freq[1] - freq[0]);          // linear mode
        }
        else
        {
            loop_size_min = (int)GlobalMembersUtil.RoundOff(2.0 * 5.0 / ((freq[0] * Math.Pow(2.0, -1.0 / (bpo))) * (1.0 - Math.Pow(2.0, -1.0 / bpo))));         // this is the estimate of how many samples the longest FIR will take up in the time domain
        }
        if (loop_size_min > loop_size)
        {
            loop_size = loop_size_min;
        }

        loop_size = GlobalMembersUtil.NextPrime(loop_size);         // enlarge the loop_size to the next multiple of short primes in order to make IFFTs faster
        //--------Loop size calculation--------

        //********Pink noise generation********
        pink_noise = new double[loop_size];

        for (i = 1; i < (loop_size + 1) >> 1; i++)
        {
            mag   = Math.Pow((double)i, 0.5 - 0.5 * LOGBASE);  // FIXME something's not necessarily right with that formula
            phase = GlobalMembersUtil.DoubleRandom() * PI;     // random phase between -pi and +pi

            pink_noise[i]             = mag * Math.Cos(phase); // real part
            pink_noise[loop_size - i] = mag * Math.Sin(phase); // imaginary part
        }
        //--------Pink noise generation--------

        // allocate noise
        noise = new double[loop_size];

        lut = GlobalMembersDsp.BlackmanSquareLookupTable(ref BMSQ_LUT_SIZE);         // Blackman Square look-up table initalisation

        for (ib = 0; ib < bands; ib++)
        {
            Console.Write("{0,4:D}/{1:D}\r", ib + 1, bands);

            // reset filtered noise
            for (i = 0; i < loop_size; i++)
            {
                noise[i] = 0;                                     // reset sband
            }
            //********Filtering********
            Fa = (int)GlobalMembersUtil.RoundOff(GlobalMembersDsp.LogPositionToFrequency((double)(ib - 1) / (double)(bands - 1), basefreq, maxfreq) * loop_size);
            Fd = (int)GlobalMembersUtil.RoundOff(GlobalMembersDsp.LogPositionToFrequency((double)(ib + 1) / (double)(bands - 1), basefreq, maxfreq) * loop_size);
            La = GlobalMembersDsp.FrequencyToLogPosition((double)Fa / (double)loop_size, basefreq, maxfreq);
            Ld = GlobalMembersDsp.FrequencyToLogPosition((double)Fd / (double)loop_size, basefreq, maxfreq);

            if (Fd > loop_size / 2)
            {
                Fd = loop_size / 2;               // stop reading if reaching the Nyquist frequency
            }
            if (Fa < 1)
            {
                Fa = 1;
            }

            Console.Write("{0,4:D}/{1:D}   {2:f2} Hz - {3:f2} Hz\r", ib + 1, bands, (double)Fa * samplerate / loop_size, (double)Fd * samplerate / loop_size);

            for (i = Fa; i < Fd; i++)
            {
                Li                       = GlobalMembersDsp.FrequencyToLogPosition((double)i / (double)loop_size, basefreq, maxfreq); // calculation of the logarithmic position
                Li                       = (Li - La) / (Ld - La);
                coef                     = 0.5 - 0.5 * Math.Cos(2.0 * PI * Li);                                                       // Hann function
                noise[i + 1]             = pink_noise[i + 1] * coef;
                noise[loop_size - 1 - i] = pink_noise[loop_size - 1 - i] * coef;
            }
            //--------Filtering--------

            GlobalMembersDsp.FFT(ref noise, ref noise, loop_size, FFTMethod.IDFT);             // IFFT of the filtered noise

            // blank the envelope
            for (i = 0; i < samplecount; i++)
            {
                envelope[i] = 0;                                                                                                                   // reset sband
            }
            GlobalMembersDsp.BlackmanSquareInterpolation(ref d[bands - ib - 1], ref envelope, ref Xsize, ref samplecount, ref lut, BMSQ_LUT_SIZE); // interpolation of the envelope

            il = 0;
            for (i = 0; i < samplecount; i++)
            {
                s[i] += envelope[i] * noise[il]; // modulation
                il++;                            // increment loop iterator
                if (il == loop_size)             // if the array iterator has reached the end of the array, it's reset
                {
                    il = 0;
                }
            }
        }

        Console.Write("\n");

        GlobalMembersDsp.Normalize(ref s, ref samplecount, 1.0);

        return(s);
    }
Exemple #5
0
    /// <summary>
    /// Sine synthesis mode
    /// </summary>
    /// <param name="d">Image (d is the original image - spectrogram)</param>
    /// <param name="Xsize">Specifies the desired width of the spectrogram</param>
    /// <param name="bands">Specifies the desired height of the spectrogram (total count of bands)</param>
    /// <param name="samplecount">Number of samples (samplecount is the output sound's length)</param>
    /// <param name="samplerate">Sample rate</param>
    /// <param name="basefreq">Minimum frequency in Hertz</param>
    /// <param name="pixpersec">Time resolution in Pixels Per Second</param>
    /// <param name="bpo">Frequency resolution in Bands Per Octave</param>
    /// <returns></returns>
    public static double[] SynthesizeSine(ref double[][] d, ref int Xsize, ref int bands, ref int samplecount, ref int samplerate, ref double basefreq, ref double pixpersec, ref double bpo)
    {
        double[] s;                             // s is the output sound
        double[] freq;                          // freq is the band's central frequency
        double[] filter;
        double[] sband;                         // sband is the band's envelope upsampled and shifted up in frequency
        int      sbsize = 0;                    // sbsize is the length of sband

        double[] sine = new double[4];          // sine is the random sine look-up table
        double   rphase;                        // rphase is the band's sine's random phase

        int i  = 0;                             // i is a general purpose iterator
        int ib = 0;                             // ib is the band iterator
        int Fc = 0;                             // Fc is the index of the band's centre in the frequency domain on the new signal
        int Bc = 0;                             // Bc is the index of the band's centre in the frequency domain on sband (its imaginary match being sbsize-Bc)
        int Mh = 0;                             // Mh is the length of the real or imaginary part of the envelope's FFT, DC element included and Nyquist element excluded
        int Mn = 0;                             // Mn is the length of the real or imaginary part of the sound's FFT, DC element included and Nyquist element excluded

        freq = GlobalMembersDsp.FrequencyArray(basefreq, bands, bpo);

        clockA = GlobalMembersUtil.GetTime();

        sbsize = GlobalMembersUtil.NextPrime(Xsize * 2);         // In Circular mode keep it to sbsize = Xsize * 2;

        samplecount = (int)GlobalMembersUtil.RoundOff(Xsize / pixpersec);
        Console.Write("Sound duration : {0:f3} s\n", (double)samplecount / samplerate);
        samplecount = (int)GlobalMembersUtil.RoundOff(0.5 * sbsize / pixpersec);       // Do not change this value as it would stretch envelopes

        s = new double[samplecount];

        // allocation of the shifted band
        sband = new double[sbsize];

        // Bc is the index of the band's centre in the frequency domain on sband (its imaginary match being sbsize-Bc)
        Bc = (int)GlobalMembersUtil.RoundOff(0.25 * (double)sbsize);

        // Mh is the length of the real or imaginary part of the envelope's FFT, DC element included and Nyquist element excluded
        Mh = (sbsize + 1) >> 1;
        // Mn is the length of the real or imaginary part of the sound's FFT, DC element included and Nyquist element excluded
        Mn = (samplecount + 1) >> 1;

        filter = GlobalMembersDsp.WindowedSinc_max(Mh, 1.0 / GlobalMembersArss.TRANSITION_BW_SYNT);         // generation of the frequency-domain filter

        for (ib = 0; ib < bands; ib++)
        {
            // reset sband
            for (i = 0; i < sbsize; i++)
            {
                sband[i] = 0;                                  // reset sband
            }
            //********Frequency shifting********
            rphase = GlobalMembersUtil.DoubleRandom() * PI;             // random phase between -pi and +pi

            for (i = 0; i < 4; i++)
            {
                // generating the random sine LUT
                sine[i] = Math.Cos(i * 2.0 * PI * 0.25 + rphase);
            }

            for (i = 0; i < Xsize; i++)             // envelope sampling rate * 2 and frequency shifting by 0.25
            {
                if ((i & 1) == 0)
                {
                    sband[i << 1]       = d[bands - ib - 1][i] * sine[0];
                    sband[(i << 1) + 1] = d[bands - ib - 1][i] * sine[1];
                }
                else
                {
                    sband[i << 1]       = d[bands - ib - 1][i] * sine[2];
                    sband[(i << 1) + 1] = d[bands - ib - 1][i] * sine[3];
                }
            }
            //--------Frequency shifting--------

            GlobalMembersDsp.FFT(ref sband, ref sband, sbsize, FFTMethod.DFT);             // FFT of the envelope

            // Fc is the index of the band's centre in the frequency domain on the new signal
            Fc = (int)GlobalMembersUtil.RoundOff(freq[ib] * samplecount);              // band's centre index (envelope's DC element)

            Console.Write("{0,4:D}/{1:D}   {2:f2} Hz\r", ib + 1, bands, (double)Fc * samplerate / samplecount);

            //********Write FFT********
            for (i = 1; i < Mh; i++)
            {
                if (Fc - Bc + i > 0 && Fc - Bc + i < Mn)                             // if we're between frequencies 0 and 0.5 of the new signal and that we're not at Fc
                {
                    s[i + Fc - Bc] += sband[i] * filter[i];                          // Real part
                    s[samplecount - (i + Fc - Bc)] += sband[sbsize - i] * filter[i]; // Imaginary part
                }
            }
            //--------Write FFT--------
        }

        Console.Write("\n");

        GlobalMembersDsp.FFT(ref s, ref s, samplecount, FFTMethod.IDFT);         // IFFT of the final sound
        samplecount = (int)GlobalMembersUtil.RoundOff(Xsize / pixpersec);        // chopping tails by ignoring them

        GlobalMembersDsp.Normalize(ref s, ref samplecount, 1.0);

        return(s);
    }
Exemple #6
0
    /// <summary>
    /// Analyze the input
    /// </summary>
    /// <param name="s">Sound (original signal)</param>
    /// <param name="samplecount">Sample count (samplecount is the original signal's orginal length)</param>
    /// <param name="samplerate">Sample rate</param>
    /// <param name="Xsize">Specifies the desired width of the spectrogram</param>
    /// <param name="bands">Specifies the desired height of the spectrogram (bands is the total count of bands)</param>
    /// <param name="bpo">Frequency resolution in Bands Per Octave</param>
    /// <param name="pixpersec">Time resolution in Pixels Per Second</param>
    /// <param name="basefreq">Minimum frequency in Hertz</param>
    /// <returns>Image</returns>
    public static double[][] Analyze(ref double[] s, ref int samplecount, ref int samplerate, ref int Xsize, ref int bands, ref double bpo, ref double pixpersec, ref double basefreq)
    {
        int i  = 0;                     // i is a general purpose iterator
        int ib = 0;                     // ib is the band iterator
        int Mb = 0;                     // Mb is the length of the original signal once zero-padded (always even)
        int Mc = 0;                     // Mc is the length of the filtered signal
        int Md = 0;                     // Md is the length of the envelopes once downsampled (constant)
        int Fa = 0;                     // Fa is the index of the band's start in the frequency domain
        int Fd = 0;                     // Fd is the index of the band's end in the frequency domain

        double[][] @out;                // @out is the output image
        double[]   h;
        double[]   freq;                // freq is the band's central frequency
        double[]   t;                   // t is temporary pointer to a new version of the signal being worked on
        double     coef;                // coef is a temporary modulation coefficient
        double     La;                  // La is the log2 of the frequency of Fa
        double     Ld;                  // Ld is the log2 of the frequency of Fd
        double     Li;                  // Li is the iterative frequency between La and Ld defined logarithmically
        double     maxfreq;             // maxfreq is the central frequency of the last band

        freq = GlobalMembersDsp.FrequencyArray(basefreq, bands, bpo);

        if (LOGBASE == 1.0)
        {
            maxfreq = bpo;             // in linear mode we use bpo to store the maxfreq since we couldn't deduce maxfreq otherwise
        }
        else
        {
            maxfreq = basefreq * Math.Pow(LOGBASE, ((double)(bands - 1) / bpo));
        }

        Xsize = (int)(samplecount * pixpersec);

        if (GlobalMembersUtil.FMod((double)samplecount * pixpersec, 1.0) != 0.0)
        {
            // round-up
            Xsize++;
        }
        Console.Write("Image size : {0:D}x{1:D}\n", Xsize, bands);

        @out = new double[bands][];

        clockA = GlobalMembersUtil.GetTime();

        //********ZEROPADDING********	Note : Don't do it in Circular mode
        // Mb is the length of the original signal once zero-padded (always even)
        if (LOGBASE == 1.0)
        {
            Mb = samplecount - 1 + (int)GlobalMembersUtil.RoundOff(5.0 / freq[1] - freq[0]);           // linear mode
        }
        else
        {
            Mb = samplecount - 1 + (int)GlobalMembersUtil.RoundOff(2.0 * 5.0 / ((freq[0] * Math.Pow(LOGBASE, -1.0 / (bpo))) * (1.0 - Math.Pow(LOGBASE, -1.0 / bpo))));
        }

        if (Mb % 2 == 1)      // if Mb is odd
        {
            Mb++;             // make it even (for the sake of simplicity)
        }

        Mc = 0;
        Md = 0;

        Mb = (int)GlobalMembersUtil.RoundOff((double)GlobalMembersUtil.NextPrime((int)GlobalMembersUtil.RoundOff(Mb * pixpersec)) / pixpersec);

        // Md is the length of the envelopes once downsampled (constant)
        Md = (int)GlobalMembersUtil.RoundOff(Mb * pixpersec);

        // realloc to the zeropadded size
        Array.Resize <double>(ref s, Mb);

        // zero-out the padded area. Equivalent of : for (i=samplecount; i<Mb; i++) s[i] = 0;
        for (i = samplecount; i < Mb; i++)
        {
            s[i] = 0;
        }
        //--------ZEROPADDING--------

        //Export.exportCSV(String.Format("samples_before_fft.csv"), s, 256);
        GlobalMembersDsp.FFT(ref s, ref s, Mb, FFTMethod.DFT);         // In-place FFT of the original zero-padded signal
        //Export.exportCSV(String.Format("samples_after_fft.csv"), s, 256);

        for (ib = 0; ib < bands; ib++)
        {
            //********Filtering********
            Fa = (int)GlobalMembersUtil.RoundOff(GlobalMembersDsp.LogPositionToFrequency((double)(ib - 1) / (double)(bands - 1), basefreq, maxfreq) * Mb);
            Fd = (int)GlobalMembersUtil.RoundOff(GlobalMembersDsp.LogPositionToFrequency((double)(ib + 1) / (double)(bands - 1), basefreq, maxfreq) * Mb);
            La = GlobalMembersDsp.FrequencyToLogPosition((double)Fa / (double)Mb, basefreq, maxfreq);
            Ld = GlobalMembersDsp.FrequencyToLogPosition((double)Fd / (double)Mb, basefreq, maxfreq);

            if (Fd > Mb / 2)
            {
                Fd = Mb / 2;               // stop reading if reaching the Nyquist frequency
            }
            if (Fa < 1)
            {
                Fa = 1;
            }

            // Mc is the length of the filtered signal
            Mc = (Fd - Fa) * 2 + 1;
            // '*2' because the filtering is on both real and imaginary parts,
            // '+1' for the DC.
            // No Nyquist component since the signal length is necessarily odd

            if (Md > Mc)               // if the band is going to be too narrow
            {
                Mc = Md;
            }

            if (Md < Mc)               // round the larger bands up to the next integer made of 2^n * 3^m
            {
                Mc = GlobalMembersUtil.NextPrime(Mc);
            }

            Console.Write("{0,4:D}/{1:D} (FFT size: {2,6:D})   {3:f2} Hz - {4:f2} Hz\r", ib + 1, bands, Mc, (double)Fa * samplerate / Mb, (double)Fd * samplerate / Mb);

            @out[bands - ib - 1] = new double[Mc + 1];

            for (i = 0; i < Fd - Fa; i++)
            {
                Li   = GlobalMembersDsp.FrequencyToLogPosition((double)(i + Fa) / (double)Mb, basefreq, maxfreq); // calculation of the logarithmic position
                Li   = (Li - La) / (Ld - La);
                coef = 0.5 - 0.5 * Math.Cos(2.0 * PI * Li);                                                       // Hann function

                @out[bands - ib - 1][i + 1]      = s[i + 1 + Fa] * coef;
                @out[bands - ib - 1][Mc - 1 - i] = s[Mb - Fa - 1 - i] * coef;
            }
            //--------Filtering--------
            //Export.exportCSV(String.Format("test/band_{0}_filtered.csv", bands-ib-1), @out[bands-ib-1]);

            //********90° rotation********
            h = new double[Mc + 1];

            // Rotation : Re' = Im; Im' = -Re
            for (i = 0; i < Fd - Fa; i++)
            {
                h[i + 1]      = @out[bands - ib - 1][Mc - 1 - i];           // Re' = Im
                h[Mc - 1 - i] = -@out[bands - ib - 1][i + 1];               // Im' = -Re
            }
            //--------90° rotation--------

            //********Envelope detection********
            //Export.exportCSV(String.Format("test/band_{0}_rotated.csv", bands-ib-1), @out[bands-ib-1]);

            GlobalMembersDsp.FFT(ref @out[bands - ib - 1], ref @out[bands - ib - 1], Mc, FFTMethod.IDFT);       // In-place IFFT of the filtered band signal
            GlobalMembersDsp.FFT(ref h, ref h, Mc, FFTMethod.IDFT);                                             // In-place IFFT of the filtered band signal rotated by 90°

            //Export.exportCSV(String.Format("test/band_{0}_before.csv", bands-ib-1), @out[bands-ib-1]);

            for (i = 0; i < Mc; i++)
            {
                // TODO: why does the above crash?!
                //for (i = 0; i < @out[bands-ib-1].Length; i++) {
                // Magnitude of the analytic signal
                double x        = @out[bands - ib - 1][i];
                double y        = h[i];
                double xSquared = x * x;
                double ySquared = y * y;
                double mag      = Math.Sqrt(xSquared + ySquared);
                @out[bands - ib - 1][i] = mag;
            }

            Array.Clear(h, 0, h.Length);
            //--------Envelope detection--------

            //********Downsampling********
            if (Mc < Md)                                             // if the band doesn't have to be resampled
            {
                Array.Resize <double>(ref @out[bands - ib - 1], Md); // simply ignore the end of it
            }

            if (Mc > Md)               // If the band *has* to be downsampled
            {
                t = @out[bands - ib - 1];
                @out[bands - ib - 1] = GlobalMembersDsp.BlackmanDownsampling(@out[bands - ib - 1], Mc, Md);         // Blackman downsampling

                Array.Clear(t, 0, t.Length);
            }
            //--------Downsampling--------

            Array.Resize <double>(ref @out[bands - ib - 1], Xsize);        // Tail chopping

            //Export.exportCSV(String.Format("test/band_{0}_after.csv", bands-ib-1), @out[bands-ib-1]);
        }

        Console.Write("\n");

        GlobalMembersDsp.Normalize(ref @out, ref Xsize, ref bands, 1.0);

        //Export.exportCSV(String.Format("out.csv"), @out);
        return(@out);
    }