/// <summary> /// Converts the given element in representation according to this field to a new element in /// representation according to B1 using the change-of-basis matrix calculated by computeCOBMatrix. /// </summary> /// /// <param name="Elem">The GF2nElement to convert</param> /// <param name="Basis">The basis to convert <c>Elem</c> to</param> /// /// <returns>Returns <c>Elem</c> converted to a new element representation according to <c>basis</c></returns> public GF2nElement Convert(GF2nElement Elem, GF2nField Basis) { if (Basis == this) return (GF2nElement)Elem.Clone(); if (FieldPoly.Equals(Basis.FieldPoly)) return (GF2nElement)Elem.Clone(); if (DegreeN != Basis.DegreeN) throw new Exception("GF2nField.Convert: B1 has a different degree and thus cannot be coverted to!"); int i; GF2Polynomial[] COBMatrix; i = Fields.IndexOf(Basis); if (i == -1) { ComputeCOBMatrix(Basis); i = Fields.IndexOf(Basis); } COBMatrix = (GF2Polynomial[])Matrices[i]; GF2nElement elemCopy = (GF2nElement)Elem.Clone(); if (elemCopy is GF2nONBElement) ((GF2nONBElement)elemCopy).ReverseOrder(); GF2Polynomial bs = new GF2Polynomial(DegreeN, elemCopy.ToFlexiBigInt()); bs.ExpandN(DegreeN); GF2Polynomial result = new GF2Polynomial(DegreeN); for (i = 0; i < DegreeN; i++) { if (bs.VectorMult(COBMatrix[i])) result.SetBit(DegreeN - 1 - i); } if (Basis is GF2nPolynomialField) { return new GF2nPolynomialElement((GF2nPolynomialField)Basis, result); } else if (Basis is GF2nONBField) { GF2nONBElement res = new GF2nONBElement((GF2nONBField)Basis, result.ToFlexiBigInt()); res.ReverseOrder(); return res; } else { throw new Exception("GF2nField.convert: B1 must be an instance of GF2nPolynomialField or GF2nONBField!"); } }
/// <summary> /// Computes the change-of-basis matrix for basis conversion according to 1363. /// The result is stored in the lists fields and matrices. /// </summary> /// /// <param name="B1">The GF2nField to convert to</param> public override void ComputeCOBMatrix(GF2nField B1) { // we are in B0 here! if (DegreeN != B1.Degree) throw new ArgumentException("GF2nPolynomialField.computeCOBMatrix: B1 has a different degree and thus cannot be coverted to!"); if (B1 is GF2nONBField) { // speedup (calculation is done in PolynomialElements instead of ONB) B1.ComputeCOBMatrix(this); return; } int i, j; GF2nElement[] gamma; GF2nElement u; GF2Polynomial[] COBMatrix = new GF2Polynomial[DegreeN]; for (i = 0; i < DegreeN; i++) COBMatrix[i] = new GF2Polynomial(DegreeN); // find Random Root do { // u is in representation according to B1 u = B1.RandomRoot(FieldPoly); } while (u.IsZero()); // build gamma matrix by multiplying by u if (u is GF2nONBElement) { gamma = new GF2nONBElement[DegreeN]; gamma[DegreeN - 1] = GF2nONBElement.One((GF2nONBField)B1); } else { gamma = new GF2nPolynomialElement[DegreeN]; gamma[DegreeN - 1] = GF2nPolynomialElement.One((GF2nPolynomialField)B1); } gamma[DegreeN - 2] = u; for (i = DegreeN - 3; i >= 0; i--) gamma[i] = (GF2nElement)gamma[i + 1].Multiply(u); if (B1 is GF2nONBField) { // convert horizontal gamma matrix by vertical Bitstrings for (i = 0; i < DegreeN; i++) { for (j = 0; j < DegreeN; j++) { // TODO remember: ONB treats its Bits in reverse order !!! if (gamma[i].TestBit(DegreeN - j - 1)) COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1); } } } else { // convert horizontal gamma matrix by vertical Bitstrings for (i = 0; i < DegreeN; i++) { for (j = 0; j < DegreeN; j++) { if (gamma[i].TestBit(j)) COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1); } } } // store field and matrix for further use Fields.Add(B1); Matrices.Add(COBMatrix); // store field and inverse matrix for further use in B1 B1.Fields.Add(this); B1.Matrices.Add(InvertMatrix(COBMatrix)); }
/// <summary> /// Computes a random root of the given polynomial /// </summary> /// /// <param name="P">A polynomial</param> /// /// <returns>A random root of the polynomial</returns> public override GF2nElement RandomRoot(GF2Polynomial P) { // We are in B1!!! GF2nPolynomial c; GF2nPolynomial ut; GF2nElement u; GF2nPolynomial h; int hDegree; // 1. Set g(t) <- f(t) GF2nPolynomial g = new GF2nPolynomial(P, this); int gDegree = g.Degree; int i; // 2. while deg(g) > 1 while (gDegree > 1) { do { // 2.1 choose random u (element of) GF(2^m) u = new GF2nONBElement(this, _secRand); ut = new GF2nPolynomial(2, GF2nONBElement.Zero(this)); // 2.2 Set c(t) <- ut ut.Set(1, u); c = new GF2nPolynomial(ut); // 2.3 For i from 1 to m-1 do for (i = 1; i <= DegreeN - 1; i++) { // 2.3.1 c(t) <- (c(t)^2 + ut) mod g(t) c = c.MultiplyAndReduce(c, g); c = c.Add(ut); } // 2.4 set h(t) <- GCD(c(t), g(t)) h = c.Gcd(g); // 2.5 if h(t) is constant or deg(g) = deg(h) then go to // step 2.1 hDegree = h.Degree; gDegree = g.Degree; } while ((hDegree == 0) || (hDegree == gDegree)); // 2.6 If 2deg(h) > deg(g) then set g(t) <- g(t)/h(t) ... if ((hDegree << 1) > gDegree) g = g.Quotient(h); else // ... else g(t) <- h(t) g = new GF2nPolynomial(h); gDegree = g.Degree; } // 3. Output g(0) return g.At(0); }