Exemple #1
0
        public void FourierLinearity()
        {
            foreach (int n in sizes)
            {
                Console.WriteLine(n);
                FourierTransformer ft  = new FourierTransformer(n);
                Random             rng = new Random(1);

                Complex[] x = TestUtilities.GenerateComplexValues(0.1, 10.0, n, rng);
                Complex[] y = TestUtilities.GenerateComplexValues(0.1, 10.0, n, rng);
                Complex[] z = new Complex[n];
                for (int i = 0; i < n; i++)
                {
                    z[i] = x[i] + y[i];
                }

                Complex[] xt = ft.Transform(x);
                Complex[] yt = ft.Transform(y);
                Complex[] zt = ft.Transform(z);

                for (int i = 0; i < n; i++)
                {
                    Assert.IsTrue(TestUtilities.IsSumNearlyEqual(xt[i], yt[i], zt[i]));
                }
            }
        }
Exemple #2
0
        private void MakeVelo()
        {
            List <SignalPoint> sourceSignal = new List <SignalPoint>();


            string path = @"D:\stud_repo\astu\DS\FourierTransform\FourierTransform\test\velo\velo04.txt";

            sourceSignal = ReadData(path, "velo");

            var    cs          = sourceSignal.Select(p => new Complex(p.Y, 0)).ToArray();
            var    transform   = FourierTransformer.DFT(cs, false);
            double hc          = _profiles["velo"].Frequency / sourceSignal.Count;
            int    targetIndex = (int)Math.Floor(3.0 / hc + 0.5);

            for (int i = 0; i < targetIndex; i++)
            {
                transform[i] = transform[transform.Length - i - 1] = 0;
            }
            var result = FourierTransformer.DFT(transform, true)
                         .Select((c, index) => new SignalPoint {
                X = index / 360.0, Y = c.Real
            }).ToList();

            ShowCharts(sourceSignal, result, "reo");
        }
Exemple #3
0
        /// <summary>
        /// Computes the power spectrum of the time series.
        /// </summary>
        /// <param name="series">The data series.</param>
        /// <returns>An array giving the power in each frequency bin.</returns>
        /// <remarks>
        /// <para>For a time series of length n, the index k gives the
        /// power near period n / k, or frequency k / n. (For example,
        /// for a year-long monthly time series, the value at index 1
        /// is proportional to the yearly variation, the value at the index 4
        /// is proportional to the quarterly variation, and the value at index 12
        /// is proportional to the monthly variation.) The zeroth
        /// entry is proportional to the unfluctuating component of
        /// the signal, i.e. the mean.</para>
        /// </remarks>
        public static double[] PowerSpectrum(this IReadOnlyList <double> series)
        {
            if (series == null)
            {
                throw new ArgumentNullException(nameof(series));
            }

            Complex[] s = new Complex[series.Count];
            for (int i = 0; i < series.Count; i++)
            {
                s[i] = series[i];
            }

            FourierTransformer fft = new FourierTransformer(s.Length);

            Complex[] t = fft.Transform(s);

            double[] u = new double[series.Count / 2];
            u[0] = MoreMath.Sqr(t[0].Re) + MoreMath.Sqr(t[0].Im);
            for (int i = 1; i < u.Length; i++)
            {
                u[i] = MoreMath.Sqr(t[i].Re) + MoreMath.Sqr(t[i].Im)
                       + MoreMath.Sqr(t[series.Count - i].Re) + MoreMath.Sqr(t[series.Count - i].Im);
            }

            return(u);
        }
Exemple #4
0
        /// <summary>
        /// Computes the auto-covariance for all lags.
        /// </summary>
        /// <param name="series">The data series.</param>
        /// <returns>An array of auto-covariance values, with the array index equal to the lag index.</returns>
        /// <remarks>
        /// <para>The computation of the auto-covariance for a given lag is an O(N) operation.
        /// Naively, the computation of the auto-covariance for all N possible lags is therefore an
        /// O(N^2) operation; this is in fact the cost of N invocations of
        /// <see cref="Autocovariance(IReadOnlyList{double},int)"/>.
        /// However, using Fourier techniques, it is possible to simultaneously compute
        /// the auto-covariance for all possible lags in O(N log N) operations. This method
        /// uses the Fourier technique and should be called if you require the auto-covariance
        /// for more than a handful of lag values.</para>
        /// </remarks>
        /// <seealso cref="Autocovariance(IReadOnlyList{double},int)"/>
        /// <see href="https://en.wikipedia.org/wiki/Autocovariance"/>
        public static double[] Autocovariance(this IReadOnlyList <double> series)
        {
            if (series == null)
            {
                throw new ArgumentNullException(nameof(series));
            }

            // To avoid aliasing, we must zero-pad with n zeros.
            Complex[] s = new Complex[2 * series.Count];
            for (int i = 0; i < series.Count; i++)
            {
                s[i] = series[i] - series.Mean();
            }

            FourierTransformer fft = new FourierTransformer(s.Length);

            Complex[] t = fft.Transform(s);

            for (int i = 0; i < t.Length; i++)
            {
                t[i] = MoreMath.Sqr(t[i].Re) + MoreMath.Sqr(t[i].Im);
            }

            Complex[] u = fft.InverseTransform(t);

            double[] c = new double[series.Count];
            for (int i = 0; i < c.Length; i++)
            {
                c[i] = u[i].Re / series.Count;
            }

            return(c);
        }
Exemple #5
0
        private void button4_Click(object sender, EventArgs e)
        {
            int       p         = (int)Math.Floor(Math.Log(_transformedSource.Count, 2));
            var       range     = _transformedSource.GetRange(0, (int)Math.Pow(2, p));
            var       signalCut = range.Select(pt => new Complex(pt.Y, 0)).ToArray();
            Stopwatch sw        = new Stopwatch();

            sw.Start();
            var transform = FourierTransformer.FFT(signalCut, false);

            sw.Stop();
            TimeSpan timeSpan = sw.Elapsed;

            label1.Text = string.Format("Time: {0}m {1}s {2}ms", timeSpan.Minutes, timeSpan.Seconds, timeSpan.Milliseconds);

            var fft = FourierTransformer.CalculateSpecs(transform);

            sourceChart.DataSource = range;
            sourceChart.DataBind();

            ampSpec.DataSource                = fft.amplitudeSpec.GetRange(0, fft.amplitudeSpec.Count / 2);
            ampSpec.Series[0].XValueMember    = "X";
            ampSpec.Series[0].YValueMembers   = "Y";
            ampSpec.ChartAreas[0].AxisX.Title = "Гц";
            ampSpec.DataBind();


            phaseSpec.DataSource                = fft.phaseSpec.GetRange(0, fft.phaseSpec.Count / 2);
            phaseSpec.Series[0].XValueMember    = "X";
            phaseSpec.Series[0].YValueMembers   = "Y";
            phaseSpec.ChartAreas[0].AxisX.Title = "Гц";
            phaseSpec.DataBind();
        }
Exemple #6
0
        /// <summary>
        /// Computes the autocovariance for all lags.
        /// </summary>
        /// <returns>An array of autocovariance values, with the array index equal to the lag index.</returns>
        /// <remarks>
        /// <para>The computation of the autocovariance for a given lag is an O(N) operation.
        /// Naively, the computation of the autocovariance for all N possible lags is an
        /// O(N^2) operation; this is in fact the cost of N invoations of <see cref="Autocovariance(int)"/>.
        /// However, it is possible using Fourier techniques to simultaneously compute
        /// the autocovariance for all possible lags in O(N log N) operations. This method
        /// uses this Fourier technique and should be called if you require the autocovariance
        /// for more than a handfull of lag values.</para>
        /// </remarks>
        /// <seealso cref="Autocovariance(int)"/>
        public double[] Autocovariance()
        {
            // To avoid aliasing, we must zero-pad with n zeros.
            Complex[] s = new Complex[2 * data.Count];
            for (int i = 0; i < data.Count; i++)
            {
                s[i] = data[i] - data.Mean;
            }

            FourierTransformer fft = new FourierTransformer(s.Length);

            Complex[] t = fft.Transform(s);

            for (int i = 0; i < t.Length; i++)
            {
                t[i] = MoreMath.Sqr(t[i].Re) + MoreMath.Sqr(t[i].Im);
            }

            Complex[] u = fft.InverseTransform(t);

            double[] c = new double[data.Count];
            for (int i = 0; i < c.Length; i++)
            {
                c[i] = u[i].Re / data.Count;
            }

            return(c);
        }
Exemple #7
0
        public void FourierParseval()
        {
            foreach (int n in sizes)
            {
                //int n = 15;
                Console.WriteLine(n);
                FourierTransformer ft  = new FourierTransformer(n);
                Random             rng = new Random(1);

                Complex[] x = TestUtilities.GenerateComplexValues(0.1, 10.0, n, rng);
                Complex[] y = TestUtilities.GenerateComplexValues(0.1, 10.0, n, rng);

                Complex s = 0.0;
                for (int i = 0; i < n; i++)
                {
                    s += x[i] * y[i].Conjugate;
                }

                Complex[] xt = ft.Transform(x);
                Complex[] yt = ft.Transform(y);

                Complex st = 0.0;
                for (int i = 0; i < n; i++)
                {
                    st += xt[i] * yt[i].Conjugate;
                }
                st /= n;

                Console.WriteLine("{0} {1}", s, st);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(s, st));
            }
        }
        public static MyPoint[] FourierTransform(MyPoint[] data)
        {
            FourierTransformer ft = new FourierTransformer(data.Length);

            Complex[] x      = data.Select(p => (Complex)p.Y).ToArray();
            Complex[] xt     = ft.Transform(x);
            double[]  result = xt.Select(c => ZComplex(c)).ToArray();
            return(result.Select((value, i) => new MyPoint(i, value)).ToArray());
        }
Exemple #9
0
        private void button3_Click(object sender, EventArgs e)
        {
            var lff  = FourierTransformer.LFF(fft, wav.Frequency, Convert.ToDouble(textBox2.Text));
            var data = lff.Select((c, i) => new SignalPoint {
                X = i, Y = c.Real
            });

            SaveWav(@"D:\stud_repo\astu\DS\FourierTransform\FourierTransform\wav\lff_test.wav"
                    , data.Select(p => (int)p.Y).ToArray());
            chart5.DataSource              = data;
            chart5.Series[0].XValueMember  = "X";
            chart5.Series[0].YValueMembers = "Y";
            chart5.DataBind();
        }
Exemple #10
0
        public static (double[] result, double[] simpleAFC, double[] dbAFC) CalculateAFC(double fc, int N, WindowType window)
        {
            double[] testSignal = new double[1 << 13];
            testSignal[0] = 1;
            double[] resultSignal = ApplyLowFilter(testSignal, fc, N, window);

            var fft = FourierTransformer.FFT(resultSignal.Select(d => new Complex(d, 0)).ToArray(), false);

            var afc = FourierTransformer.CalculateSpecs(fft);

            var db = afc.amplitudeSpec.Select(d => 20 * Log10(d.Y)).ToArray();

            return(resultSignal, afc.amplitudeSpec.Select(p => p.Y).ToArray(), db);
        }
Exemple #11
0
        //[TestMethod]
        public void FourierTiming()
        {
            int n = 10020;

            FourierTransformer ft = new FourierTransformer(n);

            Complex[] x = new Complex[n];
            x[1] = 1.0;

            Stopwatch t = Stopwatch.StartNew();

            Complex[] xt = ft.Transform(x);
            t.Stop();

            Console.WriteLine("{0} {1}", n, t.ElapsedMilliseconds);
        }
Exemple #12
0
        public void TestMethod1()
        {
            int N = 49 * 2;
            FourierTransformer ft = new FourierTransformer(N);

            Complex[] x = new Complex[N];
            x[1] = 1.0;

            Complex[] y = ft.Transform(x);

            Complex[] z = ft.InverseTransform(y);
            //Complex[] z = new Complex[N];

            for (int i = 0; i < x.Length; i++)
            {
                double t = -2.0 * Math.PI / x.Length * i;
                Console.WriteLine("{0} -> {1} {2} -> {3}", x[i], y[i], new Complex(Math.Cos(t), Math.Sin(t)), z[i]);
            }
        }
Exemple #13
0
        public void FourierInverse()
        {
            foreach (int n in sizes)
            {
                Console.WriteLine(n);

                FourierTransformer ft = new FourierTransformer(n);

                Complex[] x = TestUtilities.GenerateComplexValues(0.1, 10.0, n);

                Complex[] y = ft.Transform(x);
                Complex[] z = ft.InverseTransform(y);

                for (int i = 0; i < n; i++)
                {
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(x[i], z[i]));
                }
            }
        }
Exemple #14
0
        private void button2_Click(object sender, EventArgs e)
        {
            var cs        = _transformedSource.Select(p => new Complex(p.Y, 0)).ToList().GetRange(0, 512).ToArray();
            var transform = FourierTransformer.FFT(cs, false);
            var allHarms  = FourierTransformer.FFT(transform, true);


            chart2.DataSource = allHarms.Select((c, index) => new SignalPoint {
                X = 1.0 * index / 360, Y = c.Real
            }).ToList();
            chart2.Series[0].XValueMember  = "X";
            chart2.Series[0].YValueMembers = "Y";
            chart2.DataBind();

            for (int i = High; i < transform.Length - High; i++)
            {
                transform[i] = transform[i] = 0;
            }
            var resultHigh = FourierTransformer.FFT(transform, true);

            chart3.DataSource = resultHigh.Select((c, index) => new SignalPoint {
                X = 1.0 * index / 360, Y = c.Real
            }).ToList();;
            chart3.Series[0].XValueMember  = "X";
            chart3.Series[0].YValueMembers = "Y";
            chart3.DataBind();


            for (int i = Low; i < transform.Length - Low; i++)
            {
                transform[i] = transform[i] = 0;
            }
            var resultLow = FourierTransformer.FFT(transform, true);

            chart4.DataSource = resultLow.Select((c, index) => new SignalPoint {
                X = 1.0 * index / 360, Y = c.Real
            }).ToList();;
            chart4.Series[0].XValueMember  = "X";
            chart4.Series[0].YValueMembers = "Y";
            chart4.DataBind();
        }
Exemple #15
0
        /// <summary>
        /// Computes the power spectrum of the time series.
        /// </summary>
        /// <returns>An array giving the power in each frequency bin.</returns>
        /// <remarks>
        /// <para>For a time series of length n, the index k gives the
        /// power near period n / k, or frequency k / n. (For example,
        /// for a year-long monthly time series, the value at index 1
        /// is proportional to the yearly variation, the value at the index 4
        /// is proportional to the quarterly variation, and the value at index 12
        /// is proportional to the monthly variation.) The zeroth
        /// entry is proportional to the unfluctuating component of
        /// the signal, i.e. the mean.</para>
        /// </remarks>
        public double[] PowerSpectrum()
        {
            Complex[] s = new Complex[data.Count];
            for (int i = 0; i < data.Count; i++)
            {
                s[i] = data[i];
            }

            FourierTransformer fft = new FourierTransformer(s.Length);

            Complex[] t = fft.Transform(s);

            double[] u = new double[data.Count / 2];
            u[0] = MoreMath.Sqr(t[0].Re) + MoreMath.Sqr(t[0].Im);
            for (int i = 1; i < u.Length; i++)
            {
                u[i] = MoreMath.Sqr(t[i].Re) + MoreMath.Sqr(t[i].Im)
                       + MoreMath.Sqr(t[data.Count - i].Re) + MoreMath.Sqr(t[data.Count - i].Im);
            }

            return(u);
        }
Exemple #16
0
        public void FourierSpecialCases()
        {
            for (int n = 2; n <= 10; n++)
            {
                FourierTransformer ft = new FourierTransformer(n);
                Assert.IsTrue(ft.Length == n);

                // transform of uniform is zero frequency only
                Complex[] x1 = new Complex[n];
                for (int i = 0; i < n; i++)
                {
                    x1[i] = 1.0;
                }
                Complex[] y1 = ft.Transform(x1);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(y1[0], n));
                for (int i = 1; i < n; i++)
                {
                    Assert.IsTrue(ComplexMath.Abs(y1[i]) < TestUtilities.TargetPrecision);
                }
                Complex[] z1 = ft.InverseTransform(y1);
                for (int i = 0; i < n; i++)
                {
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(z1[i], 1.0));
                }

                // transform of pulse at 1 are nth roots of unity, read clockwise
                Complex[] x2 = new Complex[n];
                x2[1] = 1.0;
                Complex[] y2 = ft.Transform(x2);
                for (int i = 0; i < n; i++)
                {
                    double t = -2.0 * Math.PI / n * i;
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(y2[i], new Complex(Math.Cos(t), Math.Sin(t))));
                }
            }
        }
Exemple #17
0
        private void MakeCardio()
        {
            List <SignalPoint> sourceSignal = new List <SignalPoint>();


            string path = @"D:\stud_repo\astu\DS\FourierTransform\FourierTransform\test\car\cardio05.txt";

            sourceSignal = ReadData(path, "cardio");

            //var ab = Fourier.FourierTransformer.CalculateAB(sourceSignal);
            var    cs          = sourceSignal.Select(p => new Complex(p.Y, 0)).ToArray();
            var    transform   = FourierTransformer.DFT(cs, false);
            double hc          = _profiles["cardio"].Frequency / sourceSignal.Count;
            int    targetIndex = (int)Math.Floor(50.0 / hc + 0.5);

            transform[targetIndex - 1] = transform[targetIndex] = transform[targetIndex + 1] = 0;
            //ab.b[targetIndex - 1] = ab.b[targetIndex] = ab.b[targetIndex + 1] = 0;
            var result = FourierTransformer.DFT(transform, true)
                         .Select((c, index) => new SignalPoint {
                X = index / 360.0, Y = c.Real
            }).ToList();

            ShowCharts(sourceSignal, result, "cardio");
        }
Exemple #18
0
        public bool MakeSnaps(int snapsize, int snapcount, string path)
        {
            try
            {
                SnapSize  = snapsize;
                SnapCount = snapcount;
                Path      = path;

                using (var pcm = new Mp3FileReader(path))
                {
                    Length       = pcm.TotalTime.Seconds;
                    TotalSamples = pcm.Length;

                    int samplesDesired = snapsize;
                    int blockscount    = snapcount;

                    if ((pcm.WaveFormat.SampleRate != 44100) || (pcm.WaveFormat.BitsPerSample != 16))
                    {
                        return(false);
                    }

                    for (int i = 0; i < blockscount; i++)
                    {
                        var buffer = new byte[samplesDesired * 4];
                        var left   = new short[samplesDesired];
                        var right  = new short[samplesDesired];
                        var leftd  = new double[samplesDesired];
                        var rightd = new double[samplesDesired];

                        int seekCounter = 0;

                        while (seekCounter <= 5)
                        {
                            pcm.Seek((i + 1) * (i + 1) * (i + 1) * blockscount * samplesDesired % (TotalSamples - samplesDesired), SeekOrigin.Begin);
                            seekCounter++;

                            var bytesRead = pcm.Read(buffer, 0, 4 * samplesDesired);

                            int index = 0;
                            for (int sample = 0; sample < bytesRead / 4; sample++)
                            {
                                left[sample]  = BitConverter.ToInt16(buffer, index + 0);
                                right[sample] = BitConverter.ToInt16(buffer, index + 2);
                                index        += 4;
                            }

                            if (left.Average(t => Math.Abs(t)) != 0)
                            {
                                break;
                            }
                        }

                        leftd  = Utility.Normalize(left, left.Length);
                        rightd = Utility.Normalize(right, right.Length);

                        var ft  = new FourierTransformer(samplesDesired);
                        var xxa = new Complex[samplesDesired];

                        for (int j = 0; j < samplesDesired; j++)
                        {
                            xxa[j] = new Complex(leftd[j], rightd[j]);
                        }

                        var ftt       = ft.Transform(xxa);
                        var pow_re_im = new List <double>(ftt.Length);
                        for (int j = 0; j < ftt.Length; ++j)
                        {
                            pow_re_im.Add(ComplexMath.Abs(ftt[j]));
                        }
                        fft_snaps.Add(pow_re_im);
                    }
                    pcm.Close();
                }
            }
            catch (Exception)
            {
                return(false);
            }

            return(true);
        }
Exemple #19
0
        public general()
        {
            InitializeComponent();

            // Scale chart to overlay the fourier graph
            List <Entry> scaleEntries = new List <Entry>();

            for (int j = 0; j < 125; j++)
            {
                if (j % 25 == 0 && j > 0)
                {
                    scaleEntries.Add(new Entry((int)(j / 2.5))
                    {
                        ValueLabel = ((int)(j / 2.5)).ToString(), Color = SKColor.FromHsl(1, 100, 100, 255)
                    });
                }
                else
                {
                    scaleEntries.Add(new Entry((int)(j / 2.5)));
                }
            }
            var scaleChart = new LineChart()
            {
                Entries         = scaleEntries,
                LineMode        = LineMode.None,
                PointMode       = PointMode.None,
                LabelTextSize   = 50,
                PointSize       = 0,
                BackgroundColor = SKColor.FromHsl(243, 100, 50, 0)
            };

            this.fourierScaleChart.Chart = scaleChart;

            FourierTransformer ft            = new FourierTransformer(250);
            List <Complex>     headBandInput = new List <Complex>();
            //double Fs = 100;

            // Headband entries
            List <Entry> entries      = new List <Entry>();
            List <Entry> chartEntries = new List <Entry>();
            // The list that will contain all the fourier data
            List <Entry> fourierTransform = new List <Entry>();
            List <Entry> barEntries       = new List <Entry>();

            // Headset entries
            List <Entry> temperatureEntries = new List <Entry>();
            List <Entry> accelXEntries      = new List <Entry>();
            List <Entry> accelYEntries      = new List <Entry>();
            List <Entry> accelZEntries      = new List <Entry>();
            List <Entry> gyXEntries         = new List <Entry>();
            List <Entry> gyYEntries         = new List <Entry>();
            List <Entry> gyZEntries         = new List <Entry>();
            List <Entry> presEntries        = new List <Entry>();

            List <Entry> speedEntries = new List <Entry>();

            // First pass to properly remove the correct value of fourier
            bool firstpass = false;

            int packetCount   = 0;
            int packetHSCount = 0;

            int elect1_0 = 0;
            int elect2_0 = 0;
            int elect1_1 = 0;
            int elect2_1 = 0;
            int elect1_2 = 0;
            int elect2_2 = 0;
            int elect1_3 = 0;
            int elect2_3 = 0;

            float thetaWave  = 0;
            float alphaWave  = 0;
            float betaWave   = 0;
            float totalPower = 0;

            CrossBluetoothLE.Current.Adapter.DeviceAdvertised += (s, e) =>
            {
                // Check if we are connected to our devices and workout is running
                if ((Guids._guids.HBConnected == true || Guids._guids.HSConnected == true) && finishBtn.IsEnabled)
                {
                    // Check if device is headband, headset, or not one of our devices
                    if (Guids._guids.HBConnected == true && Guids._guids.HeadbandGuid == e.Device.Id)
                    {
                        // Grab advertisements and process
                        Plugin.BLE.Abstractions.AdvertisementRecord[] advertisement = e.Device.AdvertisementRecords.ToArray();
                        //var temp = advertisement[3].Data[0];

                        if (advertisement.Length == 4)
                        {
                            elect1_0 = advertisement[3].Data[0] | (advertisement[3].Data[1] << 8);
                            elect2_0 = advertisement[3].Data[2] | (advertisement[3].Data[3] << 8);
                            elect1_1 = advertisement[3].Data[4] | (advertisement[3].Data[5] << 8);
                            elect2_1 = advertisement[3].Data[6] | (advertisement[3].Data[7] << 8);
                            elect1_2 = advertisement[3].Data[8] | (advertisement[3].Data[9] << 8);
                            elect2_2 = advertisement[3].Data[10] | (advertisement[3].Data[11] << 8);
                            elect1_3 = advertisement[3].Data[12] | (advertisement[3].Data[13] << 8);
                            elect2_3 = advertisement[3].Data[14] | (advertisement[3].Data[15] << 8);
                        }
                        else
                        {
                            elect1_0 = advertisement[1].Data[0] | (advertisement[1].Data[1] << 8);
                            elect2_0 = advertisement[1].Data[2] | (advertisement[1].Data[3] << 8);
                            elect1_1 = advertisement[1].Data[4] | (advertisement[1].Data[5] << 8);
                            elect2_1 = advertisement[1].Data[6] | (advertisement[1].Data[7] << 8);
                            elect1_2 = advertisement[1].Data[8] | (advertisement[1].Data[9] << 8);
                            elect2_2 = advertisement[1].Data[10] | (advertisement[1].Data[11] << 8);
                            elect1_3 = advertisement[1].Data[12] | (advertisement[1].Data[13] << 8);
                            elect2_3 = advertisement[1].Data[14] | (advertisement[1].Data[15] << 8);
                        }

                        int input0 = elect1_0 + elect2_0;
                        int input1 = elect1_1 + elect2_1;
                        int input2 = elect1_2 + elect2_2;
                        int input3 = elect1_3 + elect2_3;

                        // Remove at 0 position for our chart
                        if (chartEntries.Count > 100)
                        {
                            chartEntries.RemoveAt(0);
                        }

                        if (packetCount == 10)
                        {
                            // Add an entry with a title
                            entries.Add(new Entry(input0)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = input0.ToString()
                            });
                            chartEntries.Add(new Entry(input0)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = input0.ToString()
                            });

                            // Add the rest of the entries
                            entries.Add(new Entry(input1)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input1)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            entries.Add(new Entry(input2)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input2)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            entries.Add(new Entry(input3)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input3)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });

                            packetCount = 0;
                        }
                        else
                        {
                            entries.Add(new Entry(input0)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input0)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            entries.Add(new Entry(input1)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input1)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            entries.Add(new Entry(input2)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input2)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            entries.Add(new Entry(input3)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            chartEntries.Add(new Entry(input3)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            packetCount++;
                        }

                        // Add values to our fourier list
                        headBandInput.Add(input0);
                        headBandInput.Add(input1);
                        headBandInput.Add(input2);
                        headBandInput.Add(input3);

                        var chart = new LineChart()
                        {
                            Entries         = chartEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.chartView.Chart = chart;

                        // Entries has reached max size
                        if (entries.Count > 250)
                        {
                            // Remove oldest values
                            while (headBandInput.Count > 250)
                            {
                                headBandInput.RemoveAt(0);
                                entries.RemoveAt(0);
                                chartEntries.RemoveAt(0);
                            }

                            // Perform fourier
                            Complex[] xt = ft.Transform(headBandInput);
                            for (int i = 1; i < 125; i++)
                            {
                                xt[i] = Meta.Numerics.ComplexMath.Abs(xt[i] * 2 / 250);
                                // Needed to not stack up fourier graphs
                                if (firstpass == true)
                                {
                                    fourierTransform.RemoveAt(0);
                                }
                                fourierTransform.Add(new Entry((float)xt[i])
                                {
                                    Color = SKColor.FromHsl(1, 100, 100, 255)
                                });
                            }
                            // Makes it so it doesn't remove the first value while it doesn't exsist.
                            firstpass = true;
                            var fChart = new LineChart()
                            {
                                Entries         = fourierTransform,
                                LabelTextSize   = 100,
                                LineSize        = 10,
                                LineMode        = LineMode.Straight,
                                PointSize       = 20,
                                BackgroundColor = SKColor.Parse("#393E46")
                            };
                            this.fourierChart.Chart = fChart;

                            totalPower = 0;
                            thetaWave  = 0;
                            alphaWave  = 0;
                            betaWave   = 0;
                            for (int n = 1; n < 125; n++)
                            {
                                if (n >= 30 && n <= 75)
                                {
                                    betaWave += (float)xt[n];
                                }
                                else if (n >= 20 && n < 30)
                                {
                                    alphaWave += (float)xt[n];
                                }
                                else if (n >= 5 && n < 20)
                                {
                                    thetaWave += (float)xt[n];
                                }
                                else
                                {
                                    totalPower += (float)xt[n];
                                }
                            }
                            if (barEntries.Count > 0)
                            {
                                barEntries.RemoveAt(0);
                                barEntries.RemoveAt(0);
                                barEntries.RemoveAt(0);
                                barEntries.RemoveAt(0);
                            }
                            barEntries.Add(new Entry(thetaWave)
                            {
                                Color = SKColor.Parse("#8B4B62"), ValueLabel = betaWave.ToString(), Label = "Sleepiness"
                            });
                            barEntries.Add(new Entry(alphaWave)
                            {
                                Color = SKColor.Parse("#BB6F6B"), ValueLabel = betaWave.ToString(), Label = "Relaxation"
                            });
                            barEntries.Add(new Entry(betaWave)
                            {
                                Color = SKColor.Parse("#FCBC80"), ValueLabel = betaWave.ToString(), Label = "Concentration"
                            });
                            barEntries.Add(new Entry(totalPower)
                            {
                                Color = SKColor.Parse("#EA9674"), ValueLabel = totalPower.ToString(), Label = "Other"
                            });
                            var barChart = new DonutChart
                            {
                                Entries         = barEntries,
                                BackgroundColor = SKColor.Parse("#393E46"),
                                LabelTextSize   = 40,
                            };
                            this.barGraphChart.Chart = barChart;
                        }
                    }
                    else if (Guids._guids.HSConnected == true && Guids._guids.HeadsetGuid == e.Device.Id)
                    {
                        Plugin.BLE.Abstractions.AdvertisementRecord[] advertisementHS = e.Device.AdvertisementRecords.ToArray();


                        // Geolocator
                        //packetTemp++;
                        //if (CrossGeolocator.IsSupported && IsLocationAvailable() && CrossGeolocator.Current.IsGeolocationEnabled && packetTemp == 10)
                        //{
                        //    double speed = await getSpeed();
                        //    speedEntries.Add(new Entry((float)speed) { Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = speed.ToString() });
                        //    packetTemp = 0;

                        //    var speedChart = new LineChart()
                        //    {
                        //        Entries = speedEntries,
                        //        LabelTextSize = 100,
                        //        LineSize = 10,
                        //        LineMode = LineMode.Straight,
                        //        PointSize = 20,
                        //        BackgroundColor = SKColor.Parse("#393E46")
                        //    };
                        //    this.speedChart.Chart = speedChart;
                        //}


                        // Data variables
                        int tempHS = 0;
                        //int presHS = 0;
                        float accelX = 0;
                        float accelY = 0;
                        float accelZ = 0;
                        float gyX    = 0;
                        float gyY    = 0;
                        float gyZ    = 0;

                        if (advertisementHS.Length == 3)
                        {
                            tempHS = advertisementHS[2].Data[3] | (advertisementHS[2].Data[4] << 8);
                            accelX = advertisementHS[2].Data[5] | (advertisementHS[2].Data[6] << 8) | (advertisementHS[2].Data[7] << 16) | (advertisementHS[2].Data[8] << 24);
                            accelY = advertisementHS[2].Data[9] | (advertisementHS[2].Data[10] << 8) | (advertisementHS[2].Data[11] << 16) | (advertisementHS[2].Data[12] << 24);
                            accelZ = advertisementHS[2].Data[13] | (advertisementHS[2].Data[14] << 8) | (advertisementHS[2].Data[15] << 16) | (advertisementHS[2].Data[16] << 24);
                            gyX    = advertisementHS[2].Data[17] | (advertisementHS[2].Data[18] << 8) | (advertisementHS[2].Data[18] << 16) | (advertisementHS[2].Data[19] << 24);
                            gyY    = advertisementHS[2].Data[21] | (advertisementHS[2].Data[22] << 8) | (advertisementHS[2].Data[23] << 16) | (advertisementHS[2].Data[24] << 24);
                            gyZ    = advertisementHS[2].Data[25] | (advertisementHS[2].Data[26] << 8) | (advertisementHS[2].Data[27] << 16) | (advertisementHS[2].Data[28] << 24);
                            // presHS = advertisementHS[2].Data[29] | (advertisementHS[2].Data[30] << 8);
                        }
                        else
                        {
                            tempHS = advertisementHS[0].Data[3] | (advertisementHS[0].Data[4] << 8);
                            accelX = advertisementHS[0].Data[5] | (advertisementHS[0].Data[6] << 8) | (advertisementHS[0].Data[7] << 16) | (advertisementHS[0].Data[8] << 24);
                            accelY = advertisementHS[0].Data[9] | (advertisementHS[0].Data[10] << 8) | (advertisementHS[0].Data[11] << 16) | (advertisementHS[0].Data[12] << 24);
                            accelZ = advertisementHS[0].Data[13] | (advertisementHS[0].Data[14] << 8) | (advertisementHS[0].Data[15] << 16) | (advertisementHS[0].Data[16] << 24);
                            gyX    = advertisementHS[0].Data[17] | (advertisementHS[0].Data[18] << 8) | (advertisementHS[0].Data[18] << 16) | (advertisementHS[0].Data[19] << 24);
                            gyY    = advertisementHS[0].Data[21] | (advertisementHS[0].Data[22] << 8) | (advertisementHS[0].Data[23] << 16) | (advertisementHS[0].Data[24] << 24);
                            gyZ    = advertisementHS[0].Data[25] | (advertisementHS[0].Data[26] << 8) | (advertisementHS[0].Data[27] << 16) | (advertisementHS[0].Data[28] << 24);
                            // presHS = advertisementHS[0].Data[29] | (advertisementHS[0].Data[30] << 8);
                        }

                        // Bit parsing
                        tempHS = tempHS / 100;
                        // presHS = ((0x0142EE << 8) | presHS)/256;
                        accelX = accelX / 1000;
                        accelY = accelY / 1000;
                        accelZ = accelZ / 1000;
                        gyX    = gyX / 1000;
                        gyY    = gyY / 1000;
                        gyZ    = gyZ / 1000;

                        // When temperatureEntries is > 50 every HS data is >50 so remove first value
                        if (temperatureEntries.Count > 50)
                        {
                            temperatureEntries.RemoveAt(0);
                            accelXEntries.RemoveAt(0);
                            accelYEntries.RemoveAt(0);
                            accelZEntries.RemoveAt(0);
                            gyXEntries.RemoveAt(0);
                            gyYEntries.RemoveAt(0);
                            gyZEntries.RemoveAt(0);
                        }

                        // Adds data to each entry. If it is the 10th entry it adds a display value
                        if (packetHSCount == 10)
                        {
                            temperatureEntries.Add(new Entry(tempHS)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = (tempHS).ToString()
                            });
                            accelXEntries.Add(new Entry((float)accelX)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)accelX).ToString()
                            });
                            accelYEntries.Add(new Entry((float)accelY)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)accelY).ToString()
                            });
                            accelZEntries.Add(new Entry((float)accelZ)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)accelZ).ToString()
                            });
                            gyXEntries.Add(new Entry((float)gyX)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)gyX).ToString()
                            });
                            gyYEntries.Add(new Entry((float)gyY)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)gyY).ToString()
                            });
                            gyZEntries.Add(new Entry((float)gyZ)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = ((float)gyZ).ToString()
                            });
                            // presEntries.Add(new Entry(presHS) { Color = SKColor.FromHsl(1, 100, 100, 255), ValueLabel = (presHS).ToString() });
                            packetHSCount = 0;
                        }
                        else
                        {
                            temperatureEntries.Add(new Entry(tempHS)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            accelXEntries.Add(new Entry((float)accelX)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            accelYEntries.Add(new Entry((float)accelY)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            accelZEntries.Add(new Entry((float)accelZ)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            gyXEntries.Add(new Entry((float)gyX)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            gyYEntries.Add(new Entry((float)gyY)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            gyZEntries.Add(new Entry((float)gyZ)
                            {
                                Color = SKColor.FromHsl(1, 100, 100, 255)
                            });
                            // presEntries.Add(new Entry(presHS) { Color = SKColor.FromHsl(1, 100, 100, 255) });
                            packetHSCount++;
                        }

                        // Declares the temperature chart
                        var tempChart = new LineChart()
                        {
                            Entries         = temperatureEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.temperatureChart.Chart = tempChart;

                        // Declares the accel x chart
                        var accelXChart = new LineChart()
                        {
                            Entries         = accelXEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.accelXChart.Chart = accelXChart;

                        var accelYChart = new LineChart()
                        {
                            Entries         = accelYEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.accelYChart.Chart = accelYChart;

                        var accelZChart = new LineChart()
                        {
                            Entries         = accelZEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.accelZChart.Chart = accelZChart;

                        var gyXChart = new LineChart()
                        {
                            Entries         = gyXEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.gyXChart.Chart = gyXChart;

                        var gyYChart = new LineChart()
                        {
                            Entries         = gyYEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.gyYChart.Chart = gyYChart;

                        var gyZChart = new LineChart()
                        {
                            Entries         = gyZEntries,
                            LabelTextSize   = 100,
                            LineSize        = 10,
                            LineMode        = LineMode.Straight,
                            PointSize       = 20,
                            BackgroundColor = SKColor.Parse("#393E46")
                        };
                        this.gyZChart.Chart = gyZChart;
                    }
                }
            };

            BindingContext = this;
        }
Exemple #20
0
        static TransferDataSong ReadAndProcess(AudioFileReader reader, string SongPath)
        {
            FourierTransformer ft = new FourierTransformer(_FrameSize);

            Complex[] temp        = new Complex[_FrameSize];
            double[]  Amp         = new double[_FrameSize];
            double[]  F           = new double[_FrameSize];
            double[]  sBass       = LinSpace(16, 60, _NumberOfFreqIntervals).ToArray();
            double[]  Bass        = LinSpace(60, 250, _NumberOfFreqIntervals).ToArray();
            double[]  Mid         = LinSpace(250, 2000, _NumberOfFreqIntervals).ToArray();
            double[]  HighMid     = LinSpace(2000, 6000, _NumberOfFreqIntervals).ToArray();
            double[]  High        = LinSpace(6000, 15000, _NumberOfFreqIntervals).ToArray();
            double[]  MainFreqs   = sBass.Concat(Bass).Concat(Mid).Concat(HighMid).Concat(High).Distinct().ToArray();
            double[]  MeanFreqs   = new double[MainFreqs.Length - 1];
            double[]  MedianFreqs = new double[MainFreqs.Length - 1];
            double[]  StdFreqs    = new double[MainFreqs.Length - 1];
            Sample    FreqSample  = new Sample();
            double    sum;

            for (int i = 0; i < _FrameSize; i++)
            {
                F[i] = (double)i / (_FrameSize / 2 + 1) * reader.WaveFormat.SampleRate / 2;
            }
            int[] FreqIndRange = new int[MainFreqs.Length];
            for (int i = 0; i < MainFreqs.Length; i++)
            {
                int j = 0;
                while (F[j] < MainFreqs[i])
                {
                    j++;
                }
                FreqIndRange[i] = j;
            }
            // Create mediumsize array for reading from stream
            int sampleCount = Math.Min(Convert.ToInt32(reader.Length / sizeof(float) / _NumberOfFrames),
                                       Convert.ToInt32(reader.WaveFormat.SampleRate * _TimeToProcess * 2 / _NumberOfFrames));

            if (sampleCount < _FrameSize * 2)
            {
                sampleCount = _FrameSize * 2;
            }
            float[] buffer = new float[sampleCount];

            for (int m = 0; m < _NumberOfFrames; m++)
            {
                reader.Read(buffer, 0, sampleCount);
                for (int k = 0; k < temp.Length; k++)
                {
                    temp[k] = buffer[2 * k];
                }
                Complex[] FFTresults = ft.Transform(temp);
                for (int i = 0; i < _FrameSize; i++)
                {
                    Amp[i] = Meta.Numerics.ComplexMath.Abs(FFTresults[i]);
                }
                sum = Amp.Sum();
                Amp = Amp.Select(x => x / sum).ToArray();
                for (int s = 0; s < MainFreqs.Length - 1; s++)
                {
                    FreqSample.Clear();
                    double[] PartAmp = new double[FreqIndRange[s + 1] - FreqIndRange[s]];
                    Array.Copy(Amp, FreqIndRange[s], PartAmp, 0, PartAmp.Length);
                    FreqSample.Add(PartAmp);
                    MeanFreqs[s]   += FreqSample.Mean / _NumberOfFrames;
                    MedianFreqs[s] += FreqSample.Median / _NumberOfFrames;
                    StdFreqs[s]    += FreqSample.StandardDeviation / _NumberOfFrames;
                }
            }
            for (int i = 0; i < MeanFreqs.Length; i++)
            {
                if (Double.IsNaN(MeanFreqs[i]))
                {
                    throw new System.Exception("Results of FFT is NaN");
                }
            }
            MemoryStream    DataStream = new MemoryStream();
            BinaryFormatter formatter  = new BinaryFormatter();

            formatter.Serialize(DataStream, new TransferDataFFT(MeanFreqs, MedianFreqs, StdFreqs));
            //DataStream.Position = 0;
            //TransferDataFFT TransferStruct2 = (TransferDataFFT)formatter.Deserialize(DataStream);
            TransferDataSong tds = new TransferDataSong();

            tds.data = DataStream.ToArray();
            tds.path = SongPath;
            TimeSpan t = TimeSpan.FromSeconds(reader.TotalTime.TotalSeconds);

            tds.duration = string.Format("{0:D2}:{1:D2}", t.Minutes, t.Seconds);
            TagLib.ByteVector.UseBrokenLatin1Behavior = true;
            using (TagLib.File tagFile = TagLib.File.Create(SongPath))
            {
                tds.title  = tagFile.Tag.Title;
                tds.artist = tagFile.Tag.FirstPerformer;
            }
            DataStream.Close();
            return(tds);
        }
Exemple #21
0
            public bool MakeSnaps(int _snapsize, int _snapcount, string _path, int smooth_size)
            {
                try
                {
                    using (Mp3FileReader pcm = new Mp3FileReader(_path))
                    {
                        int samplesDesired = _snapsize;
                        int blockscount    = _snapcount;

                        snap_size     = _snapsize;
                        snap_count    = _snapcount;
                        total_samples = pcm.Length;
                        length        = pcm.TotalTime.Seconds;
                        path          = _path;

                        if ((pcm.WaveFormat.SampleRate != 44100) || (pcm.WaveFormat.BitsPerSample != 16))
                        {
                            return(false);
                        }

                        for (int i = 0; i < blockscount; i++)
                        {
                            byte[]   buffer = new byte[samplesDesired * 4];
                            short[]  left   = new short[samplesDesired];
                            short[]  right  = new short[samplesDesired];
                            double[] leftd  = new double[samplesDesired];
                            double[] rightd = new double[samplesDesired];

                            int bytesRead = 0;

                            //for (int j = 0; j < 1; j++) ///////////
                            int seek_counter = 0;
                            seek : pcm.Seek((i + 1) * (i + 1) * (i + 1) * blockscount * samplesDesired % (total_samples - samplesDesired), SeekOrigin.Begin);
                            seek_counter++;

                            bytesRead = pcm.Read(buffer, 0, 4 * samplesDesired);

                            int index = 0;
                            for (int sample = 0; sample < bytesRead / 4; sample++)
                            {
                                left[sample]  = BitConverter.ToInt16(buffer, index); index += 2;
                                right[sample] = BitConverter.ToInt16(buffer, index); index += 2;
                            }

                            if (left.Average(t => Math.Abs(t)) == 0)
                            {
                                if (seek_counter > 5)
                                {
                                    return(false);
                                }
                                else
                                {
                                    goto seek;
                                }
                            }

                            //snap_log10_energy.Add(Math.Log10(left.Average(t => Math.Abs(t))));

                            leftd  = Normalize(left, left.Length);
                            rightd = Normalize(right, right.Length);

                            //alglib.complex[] fl;
                            //alglib.fftr1d(leftd, out fl);
                            //fl[0].x;

                            FourierTransformer ft = new FourierTransformer(samplesDesired);
                            var xxa = new Complex[leftd.Length];

                            for (int j = 0; j < leftd.Length; j++)
                            {
                                xxa[j] = new Complex(leftd[j], rightd[j]);
                            }

                            var ftt = ft.Transform(xxa);

                            List <double> pow_re_im = new List <double>();
                            //List<double> arg_re_im = new List<double>();

                            ftt.ToList().ForEach(t => pow_re_im.Add(ComplexMath.Abs(t)));
                            //ftt.ToList().ForEach(t => arg_re_im.Add(ComplexMath.Arg(t)));

                            /*if (Double.IsNaN(MC_Log10_Energy(pow_re_im)))
                             *  if (seek_counter > 5)
                             *      return false;
                             *  else
                             *      goto seek;*/

                            fft_snaps.Add(pow_re_im);
                            //fft_smoothed_snaps.Add(Smoothen(pow_re_im, smooth_size));

                            //pow_re_im = Normalize(pow_re_im);

                            /*
                             * var f_pwri = pow_re_im.Average(t => Math.Abs(t));
                             * for (int k = 0; k < pow_re_im.Count; k++)
                             *  pow_re_im[k] = (Math.Abs(pow_re_im[k]) >= f_pwri * 1.5) ? pow_re_im[k] : 0;
                             */

                            /*
                             * FourierTransformer ft2 = new FourierTransformer(samplesDesired);
                             * var xx2 = new List<Complex>();
                             * for (int j = 0; j < pow_re_im.Count; j++)
                             * {
                             *  xx2.Add(new Complex(pow_re_im[j], arg_re_im[j]));
                             * }
                             * var ftt2 = ft2.Transform(xx2);
                             * //var ftt2 = ft2.Transform(ftt);
                             *
                             * List<double> pow_re_im2 = new List<double>();
                             * ftt2.ToList().ForEach(t => pow_re_im2.Add(ComplexMath.Abs(t)));
                             * pow_re_im2 = Normalize(pow_re_im2);
                             * fft2_snaps.Add(pow_re_im2);
                             * fft2_smoothed_snaps.Add(Smoothen(pow_re_im2, smooth_size));
                             */
                        }
                        pcm.Close();
                    }
                }
                catch (Exception e)
                {
                    return(false);
                }

                return(true);
            }