static void Main(string[] args)
        {
            test1();
            CaculateTimes caculate = new CaculateTimes();

            caculate.StartTime();
            //4 3 2 6 7 8 9 0
            int[]     nums      = { 4, 3, 2, 6, 7, 8, 9, 0 };
            int[]     nums_2    = { 1, 2, 5, 4, 8, 6, 4, 5, 2, 3, 1 };
            Complex[] complices = new Complex[nums.Length];
            for (int i = 0; i < nums.Length; i++)
            {
                complices[i] = new Complex(nums[i], 0);
            }
            FourierTransform.DFT(complices, FourierTransform.Direction.Backward);
            for (int i = 0; i < nums.Length; i++)
            {
                Console.WriteLine(complices[i].Re + " " + complices[i].Im);
            }
            Console.WriteLine();
            Console.WriteLine("====================");
            Console.WriteLine();
            for (int i = 0; i < nums.Length; i++)
            {
                complices[i].Re = nums[i];
                complices[i].Im = 0;
            }
            FourierTransform.FFT(complices, FourierTransform.Direction.Backward);
            for (int i = 0; i < nums.Length; i++)
            {
                Console.WriteLine(complices[i].Re + " " + complices[i].Im);
            }
            Console.WriteLine(caculate.EndTime());
            Console.ReadKey();
        }
        //public int[] FFT(int[] y)
        public async Task <int[]> FFT(int[] y)
        {
            WvlLogger.Log(LogType.TraceAll, "FFT()");
            var input = new AForge.Math.Complex[y.Length];

            for (int i = 0; i < y.Length; i++)
            {
                input[i] = new AForge.Math.Complex(y[i], 0);
            }

            FourierTransform.FFT(input, FourierTransform.Direction.Forward);

            var result = new int[y.Length / 2];

            // getting magnitude
            for (int i = 0; i < y.Length / 2 - 1; i++)
            {
                var current = Math.Sqrt(input[i].Re * input[i].Re + input[i].Im * input[i].Im);
                current   = Math.Log10(current) * 10;
                result[i] = (int)current;
            }

            samplesUpdated(this, new SamplesUpdatedEventArgs(result));
            //PrepareHeatmapDataSeries(result);
            return(result);
        }
Exemple #3
0
        public static float[] ConvertWav2FFTMag(string wavfile, string outfile)
        {
            WAVFile audioFile = new WAVFile();
            String  warning   = audioFile.Open(wavfile, WAVFile.WAVFileMode.READ);

            Complex[] indata      = new Complex[MaxSamples];
            int       IterSamples = (audioFile.NumSamples < MaxSamples) ? audioFile.NumSamples : MaxSamples;

            float[] indata_mag = null;

            if (warning == "")
            {
                //short audioSample = 0;
                for (int sampleNum = 0; sampleNum < IterSamples; ++sampleNum)
                {
                    //audioSample = audioFile.GetNextSampleAs16Bit();
                    indata[sampleNum].Re = audioFile.GetNextSampleAs16Bit();
                }
                FourierTransform.FFT(indata, FourierTransform.Direction.Forward);
                indata_mag = GetMagnitude(indata);

                if (outfile != null)
                {
                    WriteData(indata_mag, outfile);
                }
            }
            audioFile.Close();
            return(indata_mag);
        }
Exemple #4
0
        private void CopyFromDomain()
        {
            var audioBuffer   = _gameBoy.APU.Buffer;
            var sampleCount   = _gameBoy.APU.SampleCount;
            var complexBuffer = new Complex[_fftSize * 2];
            var index         = 0;
            var originalIndex = 0;

            foreach (var value in audioBuffer)
            {
                if (originalIndex % 2 == 0)
                {
                    if (index >= sampleCount)
                    {
                        complexBuffer[index] = new Complex(0, 0);
                    }
                    else
                    {
                        complexBuffer[index] = new Complex(value, 0);
                    }

                    index++;
                    if (index == _fftSize * 2)
                    {
                        break;
                    }
                }
                originalIndex++;
            }
            FourierTransform.FFT(complexBuffer, FourierTransform.Direction.Forward);
            CopyFFTToFrameColumn(complexBuffer);
            Utils.TransferBytesToWriteableBitmap(_spectrogram, _spectrogramData);
        }
Exemple #5
0
    /// <summary>
    /// Two dimensional Fast Fourier Transform.
    /// </summary>
    ///
    /// <param name="data">Data to transform.</param>
    /// <param name="direction">Transformation direction.</param>
    ///
    /// <remarks><para><note>The method accepts <paramref name="data"/> array of 2<sup>n</sup> size
    /// only in each dimension, where <b>n</b> may vary in the [1, 14] range. For example, 16x16 array
    /// is valid, but 15x15 is not.</note></para></remarks>
    ///
    /// <exception cref="ArgumentException">Incorrect data length.</exception>
    ///
    public static void FFT2(Complex[,] data, Direction direction)
    {
        int k = data.GetLength(0);
        int n = data.GetLength(1);

        // check data size
        //if (
        //    (!Tools.IsPowerOf2(k)) ||
        //    (!Tools.IsPowerOf2(n)) ||
        //    (k < minLength) || (k > maxLength) ||
        //    (n < minLength) || (n > maxLength)
        //    )
        if (
            (!Tools.IsPowerOf2(k)) ||
            (!Tools.IsPowerOf2(n)) ||
            (k < minLength) || (k > maxLength) ||
            (n < minLength) || (n > maxLength)
            )
        {
            throw new ArgumentException("Incorrect data length.");
        }

        // process rows
        Complex[] row = new Complex[n];

        for (int i = 0; i < k; i++)
        {
            // copy row
            for (int j = 0; j < n; j++)
            {
                row[j] = data[i, j];
            }
            // transform it
            FourierTransform.FFT(row, direction);
            // copy back
            for (int j = 0; j < n; j++)
            {
                data[i, j] = row[j];
            }
        }

        // process columns
        Complex[] col = new Complex[k];

        for (int j = 0; j < n; j++)
        {
            // copy column
            for (int i = 0; i < k; i++)
            {
                col[i] = data[i, j];
            }
            // transform it
            FourierTransform.FFT(col, direction);
            // copy back
            for (int i = 0; i < k; i++)
            {
                data[i, j] = col[i];
            }
        }
    }
Exemple #6
0
        private void OnDataReceiverEvent(int[] real, int[] imaginary, int length, rx_metadata_t md)
        {
            if (length < numberOfPoints) // Insufficient data for FFT
            {
                return;
            }
            for (int i = 0; i < numberOfPoints; i++)
            {
                data[i] = new AForge.Math.Complex(real[i], imaginary[i]);
            }

            FourierTransform.FFT(data, FourierTransform.Direction.Forward);
            int count = 0;

            for (int i = numberOfPoints / 2; i < numberOfPoints; i++)
            {
                testValues[i, 1] = data[count++].Magnitude;
            }

            for (int i = 0; i < numberOfPoints / 2; i++)
            {
                testValues[i, 1] = data[count++].Magnitude;
            }

            chart.UpdateDataSeries("Test", testValues);
            //chart.RangeY = new AForge.Range(0, 2048);
        }
Exemple #7
0
        public override void FFT(bool forward)
        {
            data.CopyTo(copy, 0);

            FourierTransform.FFT(copy, forward ?
                                 FourierTransform.Direction.Forward :
                                 FourierTransform.Direction.Backward);
        }
    public void GetSpectrumData(float[] samples, float[] spectrumReal, float[] spectrumImg, FFTWindow fftWindow)
    {
        if (null == samples)
        {
            return;
        }

        int size = samples.Length;

        if (null == m_complex ||
            m_complex.Length != size)
        {
            m_complex = new float[size];
        }

        m_fourierTransform.FFT(samples, m_complex, spectrumReal, spectrumImg);
    }
Exemple #9
0
        public static void FastDFT(Complex[] x, int mode = 1)
        {
            var dir = FourierTransform.Direction.Forward;

            if (mode == -1)
            {
                dir = FourierTransform.Direction.Backward;
            }
            FourierTransform.FFT(x, dir);
        }
Exemple #10
0
        public void IFFTPasses()
        {
            var input = Enumerable.Range(0, 8)
                        .Select(_i => new Complex(SoundUtils.CalSinWave(_i, 0.25f, 250f, 8000), 0))
                        .ToArray();
            var fft    = new FourierTransform();
            var output = fft.FFT(input);
            var gots   = fft.IFFT(output);

            AssertionUtils.AreEqualComplexArray(input, gots, "逆変換に失敗しています", EPSILON);
        }
Exemple #11
0
        /// <summary>
        ///   Converts a frame to log-power-spectrum bins.
        /// </summary>
        ///
        private double[] frame2logspec(params Int16[] p_frame)
        {
            double[] w_preEmp = pre_emphasis(p_frame);
            double[] w_win    = new double[m_win.Length];
            for (int w_i = 0; w_i < m_win.Length; w_i++)
            {
                w_win[w_i] = m_win[w_i];
            }

            // Each frame has to be multiplied with a hamming window in order to keep
            // the continuity of the first and the last points in the frame.
            double[] w_frame = new double[w_win.Length];
            for (int w_i = 0; w_i < w_win.Length; w_i++)
            {
                w_frame[w_i] = w_preEmp[w_i] * w_win[w_i];
            }

            Complex[] w_complexFrame = new Complex[m_nfft];
            for (int w_i = 0; w_i < w_frame.Length && w_i < m_nfft; w_i++)
            {
                w_complexFrame[w_i] = w_frame[w_i];
            }
            for (int w_i = w_frame.Length; w_i < m_nfft; w_i++)
            {
                w_complexFrame[w_i] = 0;
            }

            // Compute the one-dimensional discrete Fourier Transform for real input.
            FourierTransform.FFT(w_complexFrame, FourierTransform.Direction.Backward);

            // Square of absolute value
            double[] w_power = new double[m_nfft / 2 + 1];
            for (int w_i = 0; w_i < m_nfft / 2 + 1; w_i++)
            {
                w_power[w_i] = w_complexFrame[w_i].Real * w_complexFrame[w_i].Real
                               + w_complexFrame[w_i].Imaginary * w_complexFrame[w_i].Imaginary;
            }

            double[] w_dotMat = Matrix.Dot(w_power, m_filters);
            double[] w_ret    = new double[w_dotMat.Length];
            for (int w_i = 0; w_i < w_ret.Length; w_i++)
            {
                if (w_dotMat[w_i] < 1.0f / 100000.0f)
                {
                    w_ret[w_i] = System.Math.Log(1.0f / 100000.0f);
                }
                else
                {
                    w_ret[w_i] = System.Math.Log(w_dotMat[w_i]);
                }
            }
            return(w_ret);
        }
        public double[] Equalize(double[] gains, WavData wavData)
        {
            var n              = FourierHelper.GetExpandedPow2(_windowLength + _filterLength - 1);
            var size           = wavData.Samples.Length + n - _windowLength;
            var result         = new double[size];
            var windows        = new double[size / _windowHopSize][];
            var windowsComplex = new Complex[size / _windowHopSize][];

            for (int i = 0; i < windows.Length; i++)
            {
                windows[i]        = new double[n];
                windowsComplex[i] = new Complex[n];
            }

            var windowFactors = _window.WindowFactors(_windowLength);
            var gainsComplex  = GenerateGains(gains, wavData.FormatChunk.SampleRate, n);

            for (int i = 0; i < windows.Length; i++)
            {
                for (int j = 0; j < _windowLength; j++)
                {
                    if (i * _windowHopSize + j < wavData.Samples.Length)
                    {
                        windows[i][j] = windowFactors[j] * wavData.Samples[i * _windowHopSize + j];
                    }
                    else
                    {
                        windows[i][j] = 0;
                    }
                }
                for (int j = _windowLength; j < n; j++)
                {
                    windows[i][j] = 0;
                }

                windowsComplex[i] = FourierTransform.FFT(windows[i]);
                windowsComplex[i] = AdjustGain(gainsComplex, windowsComplex[i]);
                windows[i]        = FourierTransform.IFFT(windowsComplex[i]);
            }

            for (int i = 0; i < windows.Length; i++)
            {
                for (int j = 0; j < windows[i].Length; j++)
                {
                    if (i * _windowHopSize + j < wavData.Samples.Length)
                    {
                        result[i * _windowHopSize + j] += windows[i][j];
                    }
                }
            }

            return(result);
        }
Exemple #13
0
        public void FFTPasses()
        {
            var input = Enumerable.Range(0, 8)
                        .Select(_i => new Complex(SoundUtils.CalSinWave(_i, 0.25f, 250f, 8000), 0))
                        .ToArray();
            var fft    = new FourierTransform();
            var output = fft.FFT(input);

            //検証用のデータ作成
            var corrects = fft.FT(input);

            AssertionUtils.AreEqualComplexArray(corrects, output, "", EPSILON);
        }
Exemple #14
0
 /// <summary>
 /// Applies backward fast Fourier transformation to the complex signal.
 /// </summary>
 ///
 public void BackwardFourierTransform()
 {
     if (status == ComplexSignalStatus.FourierTransformed)
     {
         for (int i = 0; i < Channels; i++)
         {
             Complex[] channel = GetChannel(i);
             FourierTransform.FFT(channel, FourierTransform.Direction.Backward);
             SetChannel(i, channel);
         }
         status = ComplexSignalStatus.Normal;
     }
 }
        public void IFFT()
        {
            if (copy == null)
            {
                copy = (List <DataPoint>)Extensions.Clone(signal);
            }
            FourierTransform.FFT(fft, FourierTransform.Direction.Backward);

            for (var i = 0; i < signal.Count(); ++i)
            {
                signal[i].mV = fft[i].Re;
            }
        }
Exemple #16
0
    public static Complex[] CrossCorrelation(Complex[] ffta, Complex[] fftb)
    {
        var conj = ffta.Select(i => new Complex(i.Re, -i.Im)).ToArray();

        for (int a = 0; a < conj.Length; a++)
        {
            conj[a] = Complex.Multiply(conj[a], fftb[a]);
        }

        FourierTransform.FFT(conj, FourierTransform.Direction.Backward);

        return(conj);
    }
Exemple #17
0
        private void loadButton_Click(object sender, EventArgs e)
        {
            var fileDialog = new OpenFileDialog();

            fileDialog.Filter = "Files (wav)|*.wav";
            fileDialog.ShowDialog();
            loadTextBox.Text = fileDialog.FileName;
            listBox.Items.Clear();
            pointsList.Clear();
            FileStream   fs = new FileStream(fileDialog.FileName, FileMode.Open, FileAccess.Read);
            BinaryReader br = new BinaryReader(fs);

            wav = new WAV(br, (int)fs.Length);
            setListBox(wav);
            br.Close();
            fs.Close();

            listBox.Visible       = true;
            spectrumChart.Visible = true;
            spectrumChart.Series.Clear();
            spectrumChart.Update();
            spectrumChart.ResetAutoValues();

            var tabCom = new Complex[1024];

            float[] data = wav.getFloatData();
            for (int i = 0; i < 1024; i++)
            {
                tabCom[i] = new Complex(data[i], 0);
            }

            FourierTransform.FFT(tabCom, FourierTransform.Direction.Forward);

            for (int i = 0; i < 512; i++)
            {
                pointsList.Add(new Point()
                {
                    x = (wav.header.sampleRate * i) / 511, y = tabCom[i].Magnitude * 1000
                });
            }
            spectrumChart.Series.Clear();
            spectrumChart.Series.Add("Spectrum");

            foreach (var p in pointsList)
            {
                spectrumChart.Series["Spectrum"].Points.AddXY(p.x, p.y);
            }


            MessageBox.Show("File loaded!");
        }
Exemple #18
0
        /*
         * Generates a frequency distribution for the given audio samples.
         * Applies PRE_GAIN to the samples before evaluating the Fourier transform.
         */
        protected void Fourier(float[] samples, double[] fourier, Complex[] fourierComplex)
        {
            for (int i = 0; i < samples.Length; i++)
            {
                fourierComplex[i] = new Complex(samples[i] * PRE_GAIN, 0.0);
            }

            FourierTransform.FFT(fourierComplex, FourierTransform.Direction.Forward);

            for (int i = 0; i < fourierComplex.Length; i++)
            {
                fourier[i] = fourierComplex[i].Magnitude;
            }
        }
Exemple #19
0
        private void CalculateFFT(List <float> values, List <Complex> fftValues)
        {
            Complex[] data = new Complex[FFT_SAMPLE_SIZE];
            for (int i = 0; i < FFT_SAMPLE_SIZE; i++)
            {
                data[i] = new Complex(values[i], 0);
            }

            FourierTransform.FFT(data, FourierTransform.Direction.Forward);

            fftValues.Clear();
            fftValues.Capacity = data.Length;
            fftValues.AddRange(data);
        }
Exemple #20
0
 /// <summary>
 /// Applies forward fast Fourier transformation to the complex signal.
 /// </summary>
 ///
 public void ForwardFourierTransform()
 {
     if (status == ComplexSignalStatus.Normal ||
         status == ComplexSignalStatus.Analytic)
     {
         for (int i = 0; i < Channels; i++)
         {
             System.Numerics.Complex[] channel = GetChannel(i);
             FourierTransform.FFT(channel, FourierTransform.Direction.Forward);
             SetChannel(i, channel);
         }
         status = ComplexSignalStatus.FourierTransformed;
     }
 }
Exemple #21
0
        public override double[] Spectrum(double[] input, bool scale)
        {
            var data = ToComplex(input);

            FourierTransform.FFT(data, FourierTransform.Direction.Forward);

            var spectrum = ComputeSpectrum(data);

            FourierTransform.FFT(data, FourierTransform.Direction.Backward);

            ToDouble(data, input);

            return(spectrum);
        }
Exemple #22
0
        public static void detectPitch(float[] data)
        {
            Complex[] complex = new Complex[data.Length];

            int fftPoints = 2;

            while (fftPoints * 2 <= complex.Length)
            {
                fftPoints *= 2;
            }

            for (int i = 0; i < complex.Length; i++)
            {
                complex[i] = new Complex(data[i] * Gausse(i, data.Length), 0.0);
            }
            ;

            FourierTransform.FFT(complex, FourierTransform.Direction.Forward);

            double[] fftresult = new double[complex.Length / 2];

            for (int i = 0; i < fftresult.Length; i++)
            {
                fftresult[i] = complex[i].Magnitude;
            }

            Note note;

            float fftStep = sampleRate / bufferLength;

            for (int i = 0; i < fftresult.Length; i++)
            {
                note = new Note((int)(i * fftStep));

                if (!note.name.Equals("note not found"))
                {
                    if (notes.ContainsKey(note.ToString()))
                    {
                        notes[note.ToString()].magnitude += fftresult[i];
                    }
                    else
                    {
                        note.magnitude += fftresult[i];
                        notes.Add(note.name, note);
                    }
                }
                ;
            }
        }
        public static Complex[] BandPassFilterFactors(double lowPassFreq, double highPassFreq, double sampleFreq, int filterLength, int n)
        {
            var window = new HanningWindow();
            var windowFilterFactors = window.WindowFactors(filterLength);

            var low  = LowPassFilterFactors(lowPassFreq, sampleFreq, filterLength);
            var high = HighPassFilterFactors(highPassFreq, sampleFreq, filterLength);

            var lowWindowed  = new double[n];
            var highWindowed = new double[n];

            for (int i = 0; i < filterLength; i++)
            {
                lowWindowed[i]  = low[i] * windowFilterFactors[i];
                highWindowed[i] = high[i] * windowFilterFactors[i];
            }

            for (int i = filterLength; i < n; i++)
            {
                lowWindowed[i]  = 0;
                highWindowed[i] = 0;
            }

            var shiftNumberFilter = (filterLength - 1) / 2;

            var lowShiftedFilter = lowWindowed.Take(shiftNumberFilter);
            var lowFilteredTemp  = lowWindowed.Skip(shiftNumberFilter).ToList();

            lowFilteredTemp.AddRange(lowShiftedFilter);
            lowWindowed = lowFilteredTemp.ToArray();

            var highShiftedFilter = highWindowed.Take(shiftNumberFilter);
            var highFilteredTemp  = highWindowed.Skip(shiftNumberFilter).ToList();

            highFilteredTemp.AddRange(highShiftedFilter);
            highWindowed = highFilteredTemp.ToArray();

            var lowComplex  = FourierTransform.FFT(lowWindowed);
            var highComplex = FourierTransform.FFT(highWindowed);

            var bandPass = new Complex[n];

            for (int i = 0; i < n; i++)
            {
                bandPass[i] = lowComplex[i] * highComplex[i];
            }

            return(bandPass);
        }
Exemple #24
0
 public static double[] FFT(double[] data)
 {
     double[]  fft        = new double[data.Length];
     Complex[] fftComplex = new Complex[data.Length];
     for (int i = 0; i < data.Length; i++)
     {
         fftComplex[i] = new System.Numerics.Complex(data[i], 0.0);
     }
     FourierTransform.FFT(fftComplex, FourierTransform.Direction.Forward);
     for (int i = 0; i < data.Length; i++)
     {
         fft[i] = fftComplex[i].Magnitude;
     }
     return(fft);
 }
        public override void Draw()
        {
            Graphics.SetColor(1, 1, 1);
            if (buffer == null)
            {
                Graphics.Print("No buffer available");
                return;
            }

            int   len = buffer.FloatBuffer.Length / 8;
            float pad = (float)len / WindowWidth; // samples per pixels

            for (int x = 0; x < WindowWidth; x++)
            {
                // current sample
                int   i = (int)Math.Round(x * pad);
                float y = buffer.FloatBuffer[i];

                // previous sample
                int   x1 = x - 1;
                int   i1 = (int)Math.Round((x - 1) * pad);
                float y1 = buffer.FloatBuffer[Math.Max(i1, 0)];

                // render
                Graphics.SetColor(Math.Abs(y), 1f - Math.Abs(y), Math.Abs(y), 1f);
                Graphics.Line(x1, WindowHeight / 2 + y1 * (WindowHeight / (Intensity * 2)), x, WindowHeight / 2 + y * (WindowHeight / (Intensity * 2)));
            }

            // fft
            Complex[] values = new Complex[Size];
            for (int i = 0; i < values.Length; i++)
            {
                values[i] = new Complex(buffer.FloatBuffer[i], 0.0);
            }
            FourierTransform.FFT(values, FourierTransform.Direction.Forward);

            for (int i = 0; i < Size; i++)
            {
                float v = (float)(values[i].Magnitude);
                //Graphics.Print(v.ToString(), 0, (i + 1) * 16);
                Graphics.SetColor(Math.Abs(v), 1f - Math.Abs(v), 1f - Math.Abs(v), 1f);
                Graphics.Rectangle(DrawMode.Fill, i * 16, WindowHeight, 16, -v * 10 * WindowHeight - 1);

                /*int j = Math.Max(i - 1, 0);
                 * float w = (float)(values[j].Magnitude);
                 * Graphics.Line(j, w * WindowHeight, i, v * WindowHeight);*/
            }
        }
Exemple #26
0
        /// <summary>
        /// 得到频谱数值
        /// </summary>
        /// <param name="complices"></param>
        /// <returns></returns>
        private double[] GetSpectrum(Complex [] complices)
        {
            if (complices == null)
            {
                Console.WriteLine("ConsoleMorphVOXPro.WaveDeal.Spectrogram->GetSpectrum");
                return(null);
            }

            double[] spectrumMap = new double[complices.Length];
            FourierTransform.FFT(complices, FourierTransform.Direction.Backward);
            for (int i = 0; i < spectrumMap.Length; i++)
            {
                spectrumMap[i] = complices[i].Magnitude;
            }
            return(spectrumMap);
        }
Exemple #27
0
        static double[] FFT(double[] data)
        {
            for (int i = 0; i < SAMPLE_COUNT; i++)
            {
                fftComplex[i] = new Complex(data[i], 0.0);
            }

            FourierTransform.FFT(fftComplex, FourierTransform.Direction.Forward);

            for (int i = 0; i < SAMPLE_COUNT; i++)
            {
                fft[i] = fftComplex[i].Magnitude;
            }

            return(fft);
        }
Exemple #28
0
        internal static List <TrainingValue> GetTrainingValues(List <EMGPacket> packets, bool enableSkip)
        {
            List <TrainingValue> values = new List <TrainingValue>(EMGProcessor.FFT_SAMPLE_SIZE);

            int skipsRemaining = 0;

            for (int i = 0; i < packets.Count / EMGProcessor.FFT_SAMPLE_SIZE; i++)
            {
                if (enableSkip && skipsRemaining > 0)
                {
                    skipsRemaining--;
                    continue;
                }

                Complex[]   data             = new Complex[EMGProcessor.FFT_SAMPLE_SIZE];
                int         start            = i * EMGProcessor.FFT_SAMPLE_SIZE;
                int         end              = start + EMGProcessor.FFT_SAMPLE_SIZE;
                MuscleState startMuscleState = packets[start].muscleStateHint;

                for (int j = start; j < end; j++)
                {
                    EMGPacket packet = packets[j];
                    if (packet.muscleStateHint != startMuscleState)
                    {
                        skipsRemaining += EMGProcessor.SKIPS_AFTER_TRANSITION;
                        break;
                    }

                    data[j - start] = new Complex(EMGProcessor.ValueFromPacket(packet), 0);
                }

                if (enableSkip && skipsRemaining > 0)
                {
                    continue;
                }

                FourierTransform.FFT(data, FourierTransform.Direction.Forward);
                List <Complex> fftResults = new List <Complex>(data);

                TrainingValue trainingValue = new TrainingValue((int)packets[start].muscleStateHint, EMGProcessor.FEATURE_COUNT);

                EMGProcessor.FillTrainingValue(ref trainingValue, fftResults);
                values.Add(trainingValue);
            }

            return(values);
        }
Exemple #29
0
        // Get fft result after index, use 0.25 second.
        public double[] GetFFTResult(int index)
        {
            Complex[] fftData = new Complex[this.fftLength];
            double[]  result  = new double[this.fftLength];
            for (int i = 0; i < this.fftLength; ++i)
            {
                fftData[i] = new Complex(this.data[index + i], 0);
            }

            FourierTransform.FFT(fftData, FourierTransform.Direction.Forward);
            for (int i = 0; i < this.fftLength / 2; ++i)
            {
                result[i] = fftData[i].Re * fftData[i].Re + fftData[i].Im * fftData[i].Im;
            }

            return(result);
        }
Exemple #30
0
        public List <Sound> Calculate(WavData wavData)
        {
            var frequencies = new List <Sound>();

            for (int i = 0; i < wavData.ChunkedSamples.Length; i++)
            {
                var samples = wavData.ChunkedSamples[i];

                var reducedSamples = FourierHelper.ReduceToPow2(samples);
                reducedSamples = FourierHelper.PreEmphasis(reducedSamples);
                reducedSamples = _fourierWindow.Windowing(reducedSamples);

                var complexSamples = FourierTransform.FFT(reducedSamples);
                complexSamples = complexSamples.Take(complexSamples.Length / 2).ToArray();

                var threshold = complexSamples.Max(c => c.Magnitude) / 10;
                var localMax  = 0;

                for (int j = 1; j < complexSamples.Length; j++)
                {
                    if (complexSamples[j].Magnitude > threshold && complexSamples[j].Magnitude > complexSamples[j - 1].Magnitude && complexSamples[j].Magnitude > complexSamples[j + 1].Magnitude)
                    {
                        localMax = j;
                        break;
                    }
                }

                var frequency = (wavData.FormatChunk.SampleRate / (complexSamples.Length * 2)) * localMax;
                if (frequencies.Any() && frequencies.Last().Frequency == frequency)
                {
                    frequencies.Last().EndTime += 50;
                }
                else
                {
                    frequencies.Add(new Sound
                    {
                        StartTime = i * 50,
                        EndTime   = i * 50 + 50,
                        Frequency = frequency,
                        Result    = complexSamples.Select(c => c.Magnitude).ToArray()
                    });
                }
            }

            return(frequencies);
        }