Exemple #1
0
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node  = model.NodeFactory.Create(0);

            SUT = new FiniteElementResults(ModelType.Truss1D);
        }
Exemple #2
0
        public void SpringInXAxis()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);                              // we will create and analyze a 1D spring in the vertical
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);                               // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                                                     // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                                                     // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 0);                                // create a second node at a distance 1 metre along the X axis.

            model.ConstrainNode(node2, DegreeOfFreedom.Z);                                                     // fix this node from moving along the Y-axis.  It is still free to move along the X-axis however.

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(10, 0);                                      // Create a force of 10 Newtons along the x-axis.

            model.ApplyForceToNode(force, node2);                                                              // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);                             // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                                                     // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);                           // get the displacement at the second node

            Assert.AreEqual(0.01, displacementAtNode2.X);                                                      // check that we calculated 0.010 metres (10 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1);                                       //get the reaction at the first node

            Assert.AreEqual(-10, reactionAtNode1.X);                                                           // Check that we have calculated a reaction of -10 Newtons in the X axis.
            Assert.AreEqual(0, reactionAtNode1.Z);                                                             // and a reaction of 0 Newtons in the Y axis.
        }
Exemple #3
0
        public void CalculateModelOfOneSpringWith2DegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);  // we will create and analyze a 1D truss system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);                // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                         // constrain this node from moving in the X axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);               // create a second node at a distance 1 metre along the X axis

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 2000.0); // create a spring between the two nodes of a stiffness of 2000 Newtons per metre

            ForceVector force = model.ForceFactory.Create(10.0);                   // Create a force of 10 Newtons in the x direction

            model.ApplyForceToNode(force, node2);                                  // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                         // ask the solver to solve the model and return results

            DisplacementVector displacement = results.GetDisplacement(node2);      // get the displacement at the second node

            Assert.AreEqual(0.005, displacement.X);                                // Check that we have calculated a displacement of 0.005 metres (5 millimetres) along the X axis.

            ReactionVector reaction = results.GetReaction(node1);                  //get the reaction at the first node

            Assert.AreEqual(-10, reaction.X);                                      // Check that we have calculated a reaction of -10 Newtons in the X axis.
        }
Exemple #4
0
        public void SpringAt60DegreesInXYPlane()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);     // we will create and analyze a 2D truss system
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);      // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                            // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                            // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 1.73205); // create a second node at a distance 1 metre along the X axis and 1.73 metres along the Y axis (giving an angle of 60 degrees from x-axis).

            model.ConstrainNode(node2, DegreeOfFreedom.X);

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the first two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(0, 10);                                      // Create a force of with components of 10 Newtons along the y-axis.

            model.ApplyForceToNode(force, node2);                                                              // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);                             // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                                                     // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);                           // get the displacement at the second node

            Assert.AreEqual(0, displacementAtNode2.X);                                                         // Check that there is no displacement in the x-axis
            Assert.AreEqual(0.013333, displacementAtNode2.Z, 0.001);                                           // and 0.01333 metres (13 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1);                                       //get the reaction at the first node

            Assert.AreEqual(-5.774, reactionAtNode1.X, 0.001);                                                 // Check that we have calculated a reaction of 10/SQRT(3) Newtons in the X axis.
            Assert.AreEqual(-10, reactionAtNode1.Z, 0.001);                                                    // and a reaction of -10 Newtons in the Y axis.
        }
        public void Cantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D); // we will create and analyze a 1D beam system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);              // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis
            model.ConstrainNode(node1, DegreeOfFreedom.YY);                      // constrain this node from rotating around the Y-axis

            FiniteElementNode node2 = model.NodeFactory.Create(3.0);             // create a second node at a distance 1 metre along the X axis

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node1, node2, material, section);

            ForceVector force = model.ForceFactory.CreateFor1DBeam(-10000, 0);     // Create a force of 10 KiloNewtons in the z direction

            model.ApplyForceToNode(force, node2);                                  // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                         // ask the solver to solve the model and return results

            ReactionVector reaction = results.GetReaction(node1);                  //get the reaction at the first node

            Assert.AreEqual(10000, reaction.Z, 0.001);                             // Check that we have calculated a reaction of 10 KiloNewtons in the Z-axis
            Assert.AreEqual(-30000, reaction.YY, 0.001);                           // Check that we have calculated a reaction of -30 KiloNewtonMetres around the YY axis.

            DisplacementVector displacement = results.GetDisplacement(node2);      // get the displacement at the second node

            Assert.AreEqual(-0.00214, displacement.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement.YY, 0.0001);
        }
Exemple #6
0
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node = model.NodeFactory.Create(0);

            SUT = new FiniteElementResults(ModelType.Truss1D);
        }
Exemple #7
0
 public void WillCheckForInsufficientNumberOfNodes()
 {
     model = new FiniteElementModel(ModelType.Truss1D);
     node1 = model.NodeFactory.Create(0);
     SUT   = new MatrixInversionLinearSolver(model);
     SUT.Solve();
 }
        public void ReversedCantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(3.0);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node2, node1, material, section);  //connecting the nodes in reverse order to the Cantilever() example

            ForceVector force = model.ForceFactory.CreateFor1DBeam(-10000, 0);

            model.ApplyForceToNode(force, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction = results.GetReaction(node1);

            Assert.AreEqual(10000, reaction.Z, 0.001);
            Assert.AreEqual(-30000, reaction.YY, 0.001);

            DisplacementVector displacement = results.GetDisplacement(node2);

            Assert.AreEqual(-0.00214, displacement.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement.YY, 0.0001);
        }
Exemple #9
0
        public void FourTriangleAFrame()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0.0, 0.0, 0.0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0.0, 1.0, 0.5);

            FiniteElementNode node4 = model.NodeFactory.Create(1.0, 1.0, 0.5);

            FiniteElementNode node5 = model.NodeFactory.Create(0.0, 2.0, 0.0);
            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);

            FiniteElementNode node6 = model.NodeFactory.Create(1.0, 2.0, 0.0);
            model.ConstrainNode(node6, DegreeOfFreedom.X);
            model.ConstrainNode(node6, DegreeOfFreedom.Y);
            model.ConstrainNode(node6, DegreeOfFreedom.Z);

            IMaterial material = new GenericElasticMaterial(0, 200000, 0.2, 84000);

            model.ElementFactory.CreateLinearConstantStrainTriangle(node1, node2, node3, material, 0.1);
            model.ElementFactory.CreateLinearConstantStrainTriangle(node2, node4, node3, material, 0.1);
            model.ElementFactory.CreateLinearConstantStrainTriangle(node3, node4, node5, material, 0.1);
            model.ElementFactory.CreateLinearConstantStrainTriangle(node4, node6, node5, material, 0.1);

            ForceVector force = model.ForceFactory.Create(0, 0, -10, 0, 0, 0);
            model.ApplyForceToNode(force, node3);
            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1); //get the reaction at the first node
            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);
            Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(20, reaction1.Y + reaction2.Y, 0.001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);  // get the displacement at the second node
            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Assert.AreNotEqual(0.0, displacement3.X); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement3.Y); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement3.Z); // TODO calculate the actual value, rather than just checking we have any value

            DisplacementVector displacement4 = results.GetDisplacement(node4);  // get the displacement at the second node
            Console.WriteLine("\nDisplacement4 : \n" + displacement4);
            Assert.AreNotEqual(0.0, displacement4.X); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement4.Y); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement4.Z); // TODO calculate the actual value, rather than just checking we have any value
        }
        public void CalculateGridOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Slab2D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4);

            FiniteElementNode node2 = model.NodeFactory.Create(4, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);
            model.ConstrainNode(node2, DegreeOfFreedom.YY);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);
            model.ConstrainNode(node3, DegreeOfFreedom.XX);
            model.ConstrainNode(node3, DegreeOfFreedom.YY);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 4);

            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.02, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -20000, 0, 0, 0);

            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector     node2Reaction     = results.GetReaction(node2);
            ReactionVector     node3Reaction     = results.GetReaction(node3);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Assert.AreEqual(-0.0033, node1Displacement.Z, 0.0001);
            Assert.AreEqual(-0.0010, node1Displacement.XX, 0.0001);
            Assert.AreEqual(0.0010, node1Displacement.YY, 0.0001);

            Assert.AreEqual(10794, node2Reaction.Z, 1);
            Assert.AreEqual(31776, node2Reaction.XX, 1);
            Assert.AreEqual(-1019, node2Reaction.YY, 1);

            Assert.AreEqual(-1587, node3Reaction.Z, 1);
            Assert.AreEqual(4030, node3Reaction.XX, 1);
            Assert.AreEqual(-4030, node3Reaction.YY, 1);

            Assert.AreEqual(10794, node4Reaction.Z, 1);
            Assert.AreEqual(1019, node4Reaction.XX, 1);
            Assert.AreEqual(-31776, node4Reaction.YY, 1);
        }
Exemple #11
0
        public void OneVerticalQuadFixed3PointsMembrane()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0, 0.0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(1.0, 0.0, 1.0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0.0, 0.0, 1.0);

            model.ConstrainNode(node4, DegreeOfFreedom.Y);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 0);

            model.ElementFactory.CreateLinearConstantStressQuadrilateral(node1, node2, node3, node4, material, 0.1);

            ForceVector force = model.ForceFactory.Create(10000, 0, 0, 0, 0, 0);

            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);

            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

            Console.WriteLine("\nReaction2 : \n" + reaction2);
            ReactionVector reaction3 = results.GetReaction(node3);

            Console.WriteLine("\nReaction3 : \n" + reaction3);
            DisplacementVector displacement4 = results.GetDisplacement(node4);

            Console.WriteLine("\nDisplacement4 : \n" + displacement4);

            Assert.AreEqual(2621, reaction1.X, 1);
            Assert.AreEqual(-3039, reaction1.Z, 1);
            Assert.AreEqual(-5660, reaction2.X, 1);
            Assert.AreEqual(1706, reaction2.Z, 1);
            Assert.AreEqual(-6961, reaction3.X, 1);
            Assert.AreEqual(1333, reaction3.Z, 1);

            Assert.AreEqual(0.0000012400, displacement4.X, 0.0000000001);
            Assert.AreEqual(0.0000004875, displacement4.Z, 0.0000000001);
        }
 public void WillCheckForInsufficientNumberOfElements()
 {
     model = new FiniteElementModel(ModelType.Truss1D);
     node1 = model.NodeFactory.Create(0);
     node2 = model.NodeFactory.Create(1);
     SUT = new MatrixInversionLinearSolver(model);
     SUT.Solve();
 }
Exemple #13
0
        /// <summary>
        /// Initializes a new instance of the <see cref="LinearSolver" /> class.
        /// </summary>
        /// <param name="modelToSolve">The model on which to run the analysis</param>
        /// <param name="stiffnessMatrixBuilder">The class which generates the stiffness matrices for solving.</param>
        public LinearSolver(FiniteElementModel modelToSolve, GlobalModelStiffnessMatrixBuilder stiffnessMatrixBuilder)
        {
            Guard.AgainstNullArgument(modelToSolve, "modelToSolve");
            Guard.AgainstNullArgument(stiffnessMatrixBuilder, "stiffnessMatrixBuilder");

            this.model         = modelToSolve;
            this.matrixBuilder = stiffnessMatrixBuilder;
        }
Exemple #14
0
        /// <summary>
        /// Initializes a new instance of the <see cref="LinearSolver" /> class.
        /// </summary>
        /// <param name="modelToSolve">The model on which to run the analysis</param>
        /// <param name="stiffnessMatrixBuilder">The class which generates the stiffness matrices for solving.</param>
        public LinearSolver(FiniteElementModel modelToSolve, GlobalModelStiffnessMatrixBuilder stiffnessMatrixBuilder)
        {
            Guard.AgainstNullArgument(modelToSolve, "modelToSolve");
            Guard.AgainstNullArgument(stiffnessMatrixBuilder, "stiffnessMatrixBuilder");

            this.model = modelToSolve;
            this.matrixBuilder = stiffnessMatrixBuilder;
        }
Exemple #15
0
        public void TwoTriangleWall()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D); // we will create and analyze a 2D slab system
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0, 0.0);      // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                           // constrain the node from moving in the x-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Y);                           // constrain the node from moving in the y-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                           // constrain the node from moving in the z-axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0);       // create a second node at a distance 1 metre along the X axis

            model.ConstrainNode(node2, DegreeOfFreedom.X);                           // constrain the node from moving in the x-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Y);                           // constrain the node from moving in the y-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Z);                           // constrain the node from moving in the z-axis

            FiniteElementNode node3 = model.NodeFactory.Create(0.0, 1.0, 0.0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);             // constrain the node from moving in the z-axis

            FiniteElementNode node4 = model.NodeFactory.Create(1.0, 1.0, 0.0);

            model.ConstrainNode(node4, DegreeOfFreedom.Z);             // constrain the node from moving in the z-axis

            IMaterial material = new GenericElasticMaterial(0, 200000, 0.2, 84000);

            model.ElementFactory.CreateLinearConstantStrainTriangle(node1, node2, node3, material, 0.1);             // create a triangle of thickness of 0.1 metres
            model.ElementFactory.CreateLinearConstantStrainTriangle(node2, node4, node3, material, 0.1);

            ForceVector force = model.ForceFactory.Create(0, -10); // Create a force of 10 Newtons in the y direction

            model.ApplyForceToNode(force, node3);                  // Apply that force to the third node
            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);             //get the reaction at the first node

            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

            Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(20, reaction1.Y + reaction2.Y, 0.001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);              // get the displacement at the second node

            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Assert.AreNotEqual(0.0, displacement3.X);                          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement3.Y);                          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement3.Z);                             // TODO calculate the actual value, rather than just checking we have any value

            DisplacementVector displacement4 = results.GetDisplacement(node4); // get the displacement at the second node

            Console.WriteLine("\nDisplacement4 : \n" + displacement4);
            Assert.AreNotEqual(0.0, displacement4.X);          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement4.Y);          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement4.Z);             // TODO calculate the actual value, rather than just checking we have any value
        }
        public void Calculate2DPortalFrameOf3BeamsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(-3, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(-3, 0, 6);

            FiniteElementNode node3 = model.NodeFactory.Create(3, 0, 6);

            FiniteElementNode node4 = model.NodeFactory.Create(3, 0, 0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000);
            ICrossSection section  = new GenericCrossSection(0.0002, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);

            ForceVector force2 = model.ForceFactory.Create(15000, 0, 0, 0, -10000, 0);

            model.ApplyForceToNode(force2, node2);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            ReactionVector     node1Reaction     = results.GetReaction(node1);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Assert.AreEqual(0.0052843, node2Displacement.X, 0.0001);
            Assert.AreEqual(0.0006522, node2Displacement.Z, 0.0001);
            Assert.AreEqual(0.0005, node2Displacement.YY, 0.0001);

            Assert.AreEqual(0.0044052, node3Displacement.X, 0.0001);
            Assert.AreEqual(-0.0006522, node3Displacement.Z, 0.0001);
            Assert.AreEqual(0.0006, node3Displacement.YY, 0.0001);

            Assert.AreEqual(-9000, node1Reaction.X, 500);
            Assert.AreEqual(-5000, node1Reaction.Z, 500);
            Assert.AreEqual(-30022, node1Reaction.YY, 500);

            Assert.AreEqual(-6000, node4Reaction.X, 500);
            Assert.AreEqual(5000, node4Reaction.Z, 500);
            Assert.AreEqual(-22586, node4Reaction.YY, 500);
        }
        public void ThreeNodeSimplySupportedBeam() //TODO verify results using independent check
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Frame2D);
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 0);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(2, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 10000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear1DBeam(node2, node3, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);

            model.ApplyForceToNode(force, node2);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);

            Stiffness.GlobalModelStiffnessMatrixBuilder gmsmb = new SharpFE.Stiffness.GlobalModelStiffnessMatrixBuilder(model);
            Console.WriteLine(gmsmb.BuildKnownForcesUnknownDisplacementStiffnessMatrix());

            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);

            Console.WriteLine("node1Displacement : " + node1Displacement);

            DisplacementVector node2Displacement = results.GetDisplacement(node2);

            Console.WriteLine("node2Displacement : " + node2Displacement);

            DisplacementVector node3Displacement = results.GetDisplacement(node3);

            Console.WriteLine("node3Displacement : " + node3Displacement);

            ReactionVector node1Reaction = results.GetReaction(node1);

            Console.WriteLine("node1Reaction : " + node1Reaction);

            ReactionVector node3Reaction = results.GetReaction(node3);

            Console.WriteLine("node5Reaction : " + node3Reaction);

            Assert.AreEqual(-0.000833333, node2Displacement.Z, 0.0000001);
            Assert.AreEqual(5000, node1Reaction.Z, 0.001);
            Assert.AreEqual(5000, node3Reaction.Z, 0.001);
            Assert.AreEqual(0, node2Displacement.YY, 0.0001);
            Assert.AreEqual(0.00125, node1Displacement.YY, 0.0000001);
            Assert.AreEqual(-0.00125, node3Displacement.YY, 0.0000001);
        }
Exemple #18
0
        public void Calculate2DFrameOf3BeamsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 3);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(3, 0, 3);

            FiniteElementNode node3 = model.NodeFactory.Create(6, 0, 0);

            FiniteElementNode node4 = model.NodeFactory.Create(9, 0, 0);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);

            ForceVector force2 = model.ForceFactory.Create(0, 0, -10000, 0, 5000, 0);
            model.ApplyForceToNode(force2, node2);

            ForceVector force3 = model.ForceFactory.Create(0, 0, -10000, 0, -5000, 0);
            model.ApplyForceToNode(force3, node3);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            ReactionVector node1Reaction = results.GetReaction(node1);
            ReactionVector node4Reaction = results.GetReaction(node4);

            Assert.AreEqual(0, node2Displacement.X, 0.0001);
            Assert.AreEqual(-0.0013496, node2Displacement.Z, 0.0001); ///NOTE this value of -0.0013496 matches the example, but -0.0314233 was calculated using a commercial finite element software
            Assert.AreEqual(0.00059173, node2Displacement.YY, 0.0001); ///NOTE this value of 0.00059173 does not match the example, but was verified using a commercial finite element software

            Assert.AreEqual(0, node3Displacement.X, 0.0001);
            Assert.AreEqual(-0.0013496, node3Displacement.Z, 0.0001); ///NOTE this value matches the example, but was verified using a commercial finite element software
            Assert.AreEqual(-0.00059173, node3Displacement.YY, 0.0001); ///NOTE this value of -0.00059173 does not match the example, but was verified using a commercial finite element software

            Assert.AreEqual(0, node1Reaction.X, 1);
            Assert.AreEqual(10000, node1Reaction.Z, 1);
            Assert.AreEqual(-23284, node1Reaction.YY, 1); ///NOTE this value of -23284 does not match the example, but was verified using a commercial finite element software

            Assert.AreEqual(0, node4Reaction.X, 1);
            Assert.AreEqual(10000, node4Reaction.Z, 1);
            Assert.AreEqual(23284, node4Reaction.YY, 1); ///NOTE this value of 23284 does not match the example, but was verified using a commercial finite element software
        }
 public void SetUp()
 {
     model   = null;
     node1   = null;
     node2   = null;
     spring1 = null;
     force1  = null;
     SUT     = null;
 }
Exemple #20
0
        public void Calculate2DTrussOf3BarsAnd8Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);

            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(0, 10);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(10, 10);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.CreateFor2DTruss(10, 0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 30000000, 0, 0);
            ICrossSection section  = new SolidRectangle(2, 1);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);

            ForceVector externalForce = model.ForceFactory.CreateForTruss(0, -10000);

            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(0, reactionAtNode2.X, 1);
            Assert.AreEqual(7929, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(2071, reactionAtNode3.X, 1);
            Assert.AreEqual(2071, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-2071, reactionAtNode4.X, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0.00035, displacementAtNode1.X, 0.00001);               ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
            Assert.AreEqual(-0.00132, displacementAtNode1.Z, 0.00001);              ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
        }
        public void Calculate3DFrameOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            FiniteElementNode node2 = model.NodeFactory.Create(3, 0, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 3, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 0, -4);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0.3, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.02, 0.0001, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(-10000, -15000, 0, 0, 0, 0);

            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector     node2Reaction     = results.GetReaction(node2);
            ReactionVector     node3Reaction     = results.GetReaction(node3);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Console.WriteLine("\nNode1 displacement : \n" + node1Displacement);
            Console.WriteLine("\nNode2 reaction : \n" + node2Reaction);
            Console.WriteLine("\nNode3 reaction : \n" + node3Reaction);
            Console.WriteLine("\nNode4 reaction : \n" + node4Reaction);

            Assert.Inconclusive("The below x, y and zz pass, but z, xx, yy fail");
            Assert.AreEqual(-0.000007109, node1Displacement.X, 0.00000001);
            Assert.AreEqual(-0.000010680, node1Displacement.Y, 0.00000001);
            Assert.AreEqual(-0.000014704, node1Displacement.Z, 0.00000001);
            Assert.AreEqual(0.000001147, node1Displacement.XX, 0.00000001);
            Assert.AreEqual(-0.000001068, node1Displacement.YY, 0.00000001);
            Assert.AreEqual(0.000000595, node1Displacement.ZZ, 0.000000001);
        }
Exemple #22
0
        public double CalcWeight(FiniteElementModel model)
        {
            double tot = 0;

            foreach (var elem in model.Elements)
            {
                tot += elem.Weight;
            }

            return(tot);
        }
        public void Calculate3DFrameOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0,  0,  0);

            FiniteElementNode node2 = model.NodeFactory.Create(3,  0,  0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0,  3, 0);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 0,  -4);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 84000000000);
            ICrossSection section = new GenericCrossSection(0.02, 0.0001, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(-10000, -15000, 0, 0, 0, 0);
            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector node2Reaction = results.GetReaction(node2);
            ReactionVector node3Reaction = results.GetReaction(node3);
            ReactionVector node4Reaction = results.GetReaction(node4);

            Console.WriteLine("\nNode1 displacement : \n" + node1Displacement);
            Console.WriteLine("\nNode2 reaction : \n" + node2Reaction);
            Console.WriteLine("\nNode3 reaction : \n" + node3Reaction);
            Console.WriteLine("\nNode4 reaction : \n" + node4Reaction);

            Assert.Inconclusive("The below x, y and zz pass, but z, xx, yy fail");
            Assert.AreEqual(-0.000007109, node1Displacement.X, 0.00000001);
            Assert.AreEqual(-0.000010680, node1Displacement.Y, 0.00000001);
            Assert.AreEqual(-0.000014704, node1Displacement.Z, 0.00000001);
            Assert.AreEqual(0.000001147, node1Displacement.XX, 0.00000001);
            Assert.AreEqual(-0.000001068, node1Displacement.YY, 0.00000001);
            Assert.AreEqual(0.000000595, node1Displacement.ZZ, 0.000000001);
        }
        public void SimplySupportedBeam()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);

            ForceVector moment = model.ForceFactory.Create(0, 0, 0, 0, 10000, 0);

            model.ApplyForceToNode(moment, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            // check the results
            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0, displacementAtNode1.Z, 0.001);
            Assert.AreEqual(0.00007936, displacementAtNode1.YY, 0.000001);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0, displacementAtNode2.Z, 0.001);
            Assert.AreEqual(-0.00003968, displacementAtNode2.YY, 0.000001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-10000, reactionAtNode1.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode1.YY, 0.001);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(10000, reactionAtNode2.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode2.YY, 0.001);
        }
Exemple #25
0
        public void TwoTriangleWall()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D); // we will create and analyze a 2D slab system
            FiniteElementNode node1 = model.NodeFactory.Create(0.0, 0.0, 0.0); // create a node at the origin
            model.ConstrainNode(node1, DegreeOfFreedom.X); // constrain the node from moving in the x-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Y); // constrain the node from moving in the y-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z); // constrain the node from moving in the z-axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0); // create a second node at a distance 1 metre along the X axis
            model.ConstrainNode(node2, DegreeOfFreedom.X); // constrain the node from moving in the x-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Y); // constrain the node from moving in the y-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Z); // constrain the node from moving in the z-axis

            FiniteElementNode node3 = model.NodeFactory.Create(0.0, 1.0, 0.0);
            model.ConstrainNode(node3, DegreeOfFreedom.Z); // constrain the node from moving in the z-axis

            FiniteElementNode node4 = model.NodeFactory.Create(1.0, 1.0, 0.0);
            model.ConstrainNode(node4, DegreeOfFreedom.Z); // constrain the node from moving in the z-axis

            IMaterial material = new GenericElasticMaterial(0, 200000, 0.2, 84000);

            model.ElementFactory.CreateLinearConstantStrainTriangle(node1, node2, node3, material, 0.1); // create a triangle of thickness of 0.1 metres
            model.ElementFactory.CreateLinearConstantStrainTriangle(node2, node4, node3, material, 0.1);

            ForceVector force = model.ForceFactory.Create(0, -10); // Create a force of 10 Newtons in the y direction
            model.ApplyForceToNode(force, node3); // Apply that force to the third node
            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1); //get the reaction at the first node
            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);
            Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(20, reaction1.Y + reaction2.Y, 0.001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);  // get the displacement at the second node
            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Assert.AreNotEqual(0.0, displacement3.X); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement3.Y); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement3.Z); // TODO calculate the actual value, rather than just checking we have any value

            DisplacementVector displacement4 = results.GetDisplacement(node4);  // get the displacement at the second node
            Console.WriteLine("\nDisplacement4 : \n" + displacement4);
            Assert.AreNotEqual(0.0, displacement4.X); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement4.Y); // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement4.Z); // TODO calculate the actual value, rather than just checking we have any value
        }
Exemple #26
0
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node1 = model.NodeFactory.Create(0);
            node2 = model.NodeFactory.Create(1);

            spring1 = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 4);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            force1 = model.ForceFactory.Create(20);
            model.ApplyForceToNode(force1, node2);

            SUT = new LinearSolverSVD(model);
        }
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node1 = model.NodeFactory.Create(0);
            node2 = model.NodeFactory.Create(1);

            spring1 = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 4);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            force1 = model.ForceFactory.Create(20);
            model.ApplyForceToNode(force1, node2);

            SUT = new LinearSolverSVD(model);
        }
Exemple #28
0
        public void Setup()
        {
            SUT = new FiniteElementModel(ModelType.Truss1D);

            node1   = SUT.NodeFactory.Create(0);
            node2   = SUT.NodeFactory.Create(1);
            node3   = SUT.NodeFactory.Create(2);
            spring1 = SUT.ElementFactory.CreateLinearConstantSpring(node1, node2, 3);
            spring2 = SUT.ElementFactory.CreateLinearConstantSpring(node2, node3, 2);

            SUT.ConstrainNode(node1, DegreeOfFreedom.X);
            SUT.ConstrainNode(node3, DegreeOfFreedom.X);

            force1 = SUT.ForceFactory.Create(20);
            SUT.ApplyForceToNode(force1, node2);
        }
Exemple #29
0
        public void OneQuadMembraneLateralLoad()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane2D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0);

            model.ConstrainNode(node2, DegreeOfFreedom.Y);

            FiniteElementNode node3 = model.NodeFactory.Create(1.0, 1.0);

            FiniteElementNode node4 = model.NodeFactory.Create(0.0, 1.0);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 0);

            model.ElementFactory.CreateLinearConstantStressQuadrilateral(node1, node2, node3, node4, material, 0.1);

            ForceVector force = model.ForceFactory.Create(10000, 0);

            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);
//			Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

//			Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(0, reaction1.Y + reaction2.Y, 1);
            Assert.AreEqual(-10000, reaction1.X, 1);

            DisplacementVector displacement3 = results.GetDisplacement(node3);
            DisplacementVector displacement4 = results.GetDisplacement(node4);

            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Console.WriteLine("\nDisplacement4 : \n" + displacement4);

            Assert.AreEqual(0.000002619047, displacement3.X, 0.0000000001);
            Assert.AreEqual(-0.000001428571, displacement3.Y, 0.0000000001);

            Assert.AreEqual(0.000004047618, displacement4.X, 0.0000000001);
            Assert.AreEqual(0.000001428571, displacement4.Y, 0.0000000001);
        }
        private void Create2DSingleSpringModelAroundOrigin(double x, double z)
        {
            model = new FiniteElementModel(ModelType.Truss2D);
            node1 = model.NodeFactory.CreateFor2DTruss(0, 0);
            node2 = model.NodeFactory.CreateFor2DTruss(x, z);

            spring1 = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.X);

            force1 = model.ForceFactory.CreateForTruss(0, -10);
            model.ApplyForceToNode(force1, node2);

            SUT = new LinearSolverSVD(model);
        }
Exemple #31
0
        public void CalculateModelOfTwoBarsAndOneSpringWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(2.0);

            FiniteElementNode node3 = model.NodeFactory.Create(4.0);

            FiniteElementNode node4 = model.NodeFactory.Create(6.0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);

            IMaterial     material = new GenericElasticMaterial(0, 70000000000, 0, 0);
            ICrossSection section  = new SolidRectangle(0.02, 0.01);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node2, node3, material, section);
            model.ElementFactory.CreateLinearConstantSpring(node3, node4, 2000000);


            ForceVector externalForce = model.ForceFactory.Create(8000);

            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0.000935, displacementAtNode2.X, 0.001);

            DisplacementVector displacementAtNode3 = results.GetDisplacement(node3);

            Assert.AreEqual(0.000727, displacementAtNode3.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-6546, reactionAtNode1.X, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-1455, reactionAtNode4.X, 1);
        }
        public void SimplySupportedBeam()                                        //TODO verify using independent check
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D); // we will create and analyze a 1D beam system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);              // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);             // create a second node at a distance 1 metre along the X axis

            model.ConstrainNode(node2, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section); // create a spring between the two nodes of a stiffness of 2000 Newtons per metre

            ForceVector moment = model.ForceFactory.CreateFor1DBeam(0, 10000);        // Create a clockwise(?) moment of 10 KiloNewtonmetres around the yy axis

            model.ApplyForceToNode(moment, node1);                                    // Apply that moment to the first node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);    // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                            // ask the solver to solve the model and return results

            // check the results
            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0, displacementAtNode1.Z, 0.001);
            Assert.AreEqual(0.00007936, displacementAtNode1.YY, 0.00000001);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0, displacementAtNode2.Z, 0.001);
            Assert.AreEqual(-0.00003968, displacementAtNode2.YY, 0.00000001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-10000, reactionAtNode1.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode1.YY, 0.001);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(10000, reactionAtNode2.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode2.YY, 0.001);
        }
Exemple #33
0
        public void CalculateModelOfThreeSpringsWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);

            FiniteElementNode node3 = model.NodeFactory.Create(2.0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);

            FiniteElementNode node4 = model.NodeFactory.Create(2.00001);             ///TODO allow multiple nodes to be added in the same location

            model.ConstrainNode(node4, DegreeOfFreedom.X);

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node3, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node4, 1);

            ForceVector externalForce = model.ForceFactory.Create(10);

            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(3.333, displacementAtNode2.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-3.333, reactionAtNode1.X, 0.001);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(-3.333, reactionAtNode3.X, 0.001);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-3.333, reactionAtNode4.X, 0.001);
        }
        public void ThreeNodeCantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);
            model.ConstrainNode(node1, DegreeOfFreedom.ZZ);

            FiniteElementNode node2 = model.NodeFactory.Create(1.5, 0, 0);
            FiniteElementNode node3 = model.NodeFactory.Create(3.0, 0, 0);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);

            model.ApplyForceToNode(force, node3);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction = results.GetReaction(node1);

            Assert.AreEqual(10000, reaction.Z, 0.001);
            Assert.AreEqual(-30000, reaction.YY, 0.001);

            DisplacementVector displacement2 = results.GetDisplacement(node2);

            Assert.AreEqual(-0.000670, displacement2.Z, 0.0005);
            Assert.AreEqual(0.000804, displacement2.YY, 0.0001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);

            Assert.AreEqual(-0.00214, displacement3.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement3.YY, 0.0001);
        }
Exemple #35
0
        public void OneQuadMembraneLateralLoad()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane2D);
            FiniteElementNode node1 = model.NodeFactory.Create(0.0, 0.0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);

            FiniteElementNode node3 = model.NodeFactory.Create(1.0, 1.0);

            FiniteElementNode node4 = model.NodeFactory.Create(0.0, 1.0);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 0);

            model.ElementFactory.CreateLinearConstantStressQuadrilateral(node1, node2, node3, node4, material, 0.1);

            ForceVector force = model.ForceFactory.Create(10000, 0);
            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);
            //			Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);
            //			Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(0, reaction1.Y + reaction2.Y, 1);
            Assert.AreEqual(-10000, reaction1.X, 1);

            DisplacementVector displacement3 = results.GetDisplacement(node3);
            DisplacementVector displacement4 = results.GetDisplacement(node4);
            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Console.WriteLine("\nDisplacement4 : \n" + displacement4);

            Assert.AreEqual( 0.000002619047, displacement3.X, 0.0000000001);
            Assert.AreEqual(-0.000001428571, displacement3.Y, 0.0000000001);

            Assert.AreEqual( 0.000004047618, displacement4.X, 0.0000000001);
            Assert.AreEqual( 0.000001428571, displacement4.Y, 0.0000000001);
        }
Exemple #36
0
        public List <ElementResult> CalcElementResults(FiniteElementModel model, FiniteElementResults results)
        {
            List <ElementResult> output = new List <ElementResult>();

            //1. Calculate for frames
            foreach (var elem in model.Elements)
            {
                if (elem is LinearTruss)
                {
                    var truss    = elem as LinearTruss;
                    var startLoc = truss.StartNode.Location;
                    var endLoc   = truss.EndNode.Location;

                    var startDisp = GetDisplacement(truss.StartNode, results);
                    var endDisp   = GetDisplacement(truss.EndNode, results);

                    var dispStartLoc = new CartesianPoint(
                        truss.StartNode.X + startDisp.X,
                        truss.StartNode.Y + startDisp.Y,
                        truss.StartNode.Z + startDisp.Z);
                    var dispEndLoc = new CartesianPoint(
                        truss.EndNode.X + endDisp.X,
                        truss.EndNode.Y + endDisp.Y,
                        truss.EndNode.Z + endDisp.Z);

                    double initialDist  = Distance(startLoc, endLoc);
                    double deformedDist = Distance(dispStartLoc, dispEndLoc);

                    double dx         = deformedDist - initialDist;
                    var    axialForce = truss.Material.YoungsModulus * truss.CrossSection.Area * dx;

                    output.Add(new ElementResult()
                    {
                        AxialForce = axialForce
                    });
                }
            }

            return(output);
        }
Exemple #37
0
        public void CalculateModelOfOneSpringWith2DegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D); // we will create and analyze a 1D truss system
            FiniteElementNode node1 = model.NodeFactory.Create(0); // create a node at the origin
            model.ConstrainNode(node1, DegreeOfFreedom.X); // constrain this node from moving in the X axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0); // create a second node at a distance 1 metre along the X axis

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 2000.0); // create a spring between the two nodes of a stiffness of 2000 Newtons per metre

            ForceVector force = model.ForceFactory.Create(10.0); // Create a force of 10 Newtons in the x direction
            model.ApplyForceToNode(force, node2); // Apply that force to the second node

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve(); // ask the solver to solve the model and return results

            DisplacementVector displacement = results.GetDisplacement(node2);  // get the displacement at the second node
            Assert.AreEqual(0.005, displacement.X); // Check that we have calculated a displacement of 0.005 metres (5 millimetres) along the X axis.

            ReactionVector reaction = results.GetReaction(node1); //get the reaction at the first node
            Assert.AreEqual(-10, reaction.X); // Check that we have calculated a reaction of -10 Newtons in the X axis.
        }
Exemple #38
0
        public void CalculateModelOfThreeBarsWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode node1 = model.NodeFactory.Create(0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(30.0);

            FiniteElementNode node3 = model.NodeFactory.Create(60.0);

            FiniteElementNode node4 = model.NodeFactory.Create(90.0);
            model.ConstrainNode(node4, DegreeOfFreedom.X);

            IMaterial material = new GenericElasticMaterial(0, 30000000, 0, 0);
            ICrossSection section = new SolidRectangle(1, 1);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node2, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node3, node4, material, section);

            ForceVector externalForce = model.ForceFactory.Create(3000);
            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);
            Assert.AreEqual(0.002, displacementAtNode2.X, 0.001);

            DisplacementVector displacementAtNode3 = results.GetDisplacement(node3);
            Assert.AreEqual(0.001, displacementAtNode3.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);
            Assert.AreEqual(-2000, reactionAtNode1.X, 0.001);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);
            Assert.AreEqual(-1000, reactionAtNode4.X, 0.001);
        }
Exemple #39
0
        public AnalysisResults AnalyzeModel(FiniteElementModel model)
        {
            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            AnalysisResults pixResults = new AnalysisResults();

            int i = 0;

            foreach (var node in model.Nodes)
            {
                DisplacementVector disp = GetDisplacement(node, results);

                pixResults.NodeResults.Add(i, new NodeResult()
                {
                    DispX = disp.X,
                    DispY = disp.Z
                });
                i++;
            }
            //CalcElementResults(model);

            return(pixResults);
        }
Exemple #40
0
        public void PortalFrame()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(-10, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(-10, 0, 10);
            FiniteElementNode node3 = model.NodeFactory.Create(0, 0, 14);
            FiniteElementNode node4 = model.NodeFactory.Create(10, 0, 10);

            FiniteElementNode node5 = model.NodeFactory.Create(10, 0, 0);
            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);
            model.ConstrainNode(node5, DegreeOfFreedom.XX);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);
            model.ElementFactory.CreateLinear3DBeam(node4, node5, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, 10000, 0, 0, 0);
            model.ApplyForceToNode(force, node3);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            DisplacementVector node4Displacement = results.GetDisplacement(node4);
            DisplacementVector node5Displacement = results.GetDisplacement(node5);
            ReactionVector node1Reaction = results.GetReaction(node1);
            ReactionVector node5Reaction = results.GetReaction(node5);

            Assert.AreEqual(0, node1Displacement.X, 0.0001);
            Assert.AreEqual(0, node1Displacement.Z, 0.0001);
            Assert.AreEqual(0.0010985, node1Displacement.YY, 0.0001);

            Assert.AreEqual(0.004027, node2Displacement.X, 0.0001);
            Assert.AreEqual(0.002381, node2Displacement.Z, 0.0001);
            Assert.AreEqual(-0.000996, node2Displacement.YY, 0.0001);

            Assert.AreEqual(0, node3Displacement.X, 0.0001);
            Assert.AreEqual(0.01723, node3Displacement.Z, 0.0001);
            Assert.AreEqual(0, node3Displacement.YY, 0.0001);

            Assert.AreEqual(-0.004027, node4Displacement.X, 0.0001);
            Assert.AreEqual(0.002381, node4Displacement.Z, 0.0001);
            Assert.AreEqual(0.000996, node4Displacement.YY, 0.0001);

            Assert.AreEqual(0, node5Displacement.X, 0.0001);
            Assert.AreEqual(0, node5Displacement.Z, 0.0001);
            Assert.AreEqual(-0.0010985, node5Displacement.YY, 0.0001);

            Assert.AreEqual(-1759, node1Reaction.X, 1);
            Assert.AreEqual(-5000, node1Reaction.Z, 1);
            Assert.AreEqual(0, node1Reaction.YY, 1);

            Assert.AreEqual(1759, node5Reaction.X, 1);
            Assert.AreEqual(-5000, node5Reaction.Z, 1);
            Assert.AreEqual(0, node5Reaction.YY, 1);
        }
Exemple #41
0
        public void Cantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D); // we will create and analyze a 1D beam system
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 0); // create a node at the origin
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z); // constrain the node from moving in the Z-axis
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY); // constrain this node from rotating around the Y-axis
            model.ConstrainNode(node1, DegreeOfFreedom.ZZ);

            FiniteElementNode node2 = model.NodeFactory.Create(3.0, 0, 0); // create a second node at a distance 1 metre along the X axis

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0); // Create a force of 10 KiloNewtons in the z direction
            model.ApplyForceToNode(force, node2); // Apply that force to the second node

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve(); // ask the solver to solve the model and return results

            ReactionVector reaction = results.GetReaction(node1); //get the reaction at the first node
            Assert.AreEqual(10000, reaction.Z, 0.001);   // Check that we have calculated a reaction of 10 KiloNewtons in the Z-axis
            Assert.AreEqual(-30000, reaction.YY, 0.001); // Check that we have calculated a reaction of -30 KiloNewtonMetres around the YY axis.

            DisplacementVector displacement = results.GetDisplacement(node2);  // get the displacement at the second node
            Assert.AreEqual(-0.00214, displacement.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement.YY, 0.0001);
        }
        public void Calculate3DTrussOf4BarsAnd15Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss3D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4, 3);

            FiniteElementNode node2 = model.NodeFactory.Create(0, 4, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 4, 6);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(4, 0, 3);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            FiniteElementNode node5 = model.NodeFactory.Create(8, -1, 1);

            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new SolidRectangle(0.01, 0.01);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node5, material, section);

            ForceVector externalForce = model.ForceFactory.Create(0, -10000, 0, 0, 0, 0);

            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(270.9, reactionAtNode2.X, 1);
            Assert.AreEqual(0, reactionAtNode2.Y, 1);
            Assert.AreEqual(203.2, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(1354.6, reactionAtNode3.X, 1);
            Assert.AreEqual(0, reactionAtNode3.Y, 1);
            Assert.AreEqual(-1016, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(0, reactionAtNode4.X, 1);
            Assert.AreEqual(7968.1, reactionAtNode4.Y, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            ReactionVector reactionAtNode5 = results.GetReaction(node5);

            Assert.AreEqual(-1625.5, reactionAtNode5.X, 1);
            Assert.AreEqual(2031.9, reactionAtNode5.Y, 1);
            Assert.AreEqual(812.8, reactionAtNode5.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(-0.0003024, displacementAtNode1.X, 0.0001);             //NOTE the results given in the book are 1E03
            Assert.AreEqual(-0.0015177, displacementAtNode1.Y, 0.0001);
            Assert.AreEqual(0.0002688, displacementAtNode1.Z, 0.0001);
        }
Exemple #43
0
        public void SpringAt60DegreesInXYPlane()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D); // we will create and analyze a 2D truss system
            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0); // create a node at the origin
            model.ConstrainNode(node1, DegreeOfFreedom.X); // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z); // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 1.73205); // create a second node at a distance 1 metre along the X axis and 1.73 metres along the Y axis (giving an angle of 60 degrees from x-axis).
            model.ConstrainNode(node2, DegreeOfFreedom.X);

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the first two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(0, 10); // Create a force of with components of 10 Newtons along the y-axis.
            model.ApplyForceToNode(force, node2); // Apply that force to the second node

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve(); // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);  // get the displacement at the second node
            Assert.AreEqual(0, displacementAtNode2.X); // Check that there is no displacement in the x-axis
            Assert.AreEqual(0.013333, displacementAtNode2.Z, 0.001); // and 0.01333 metres (13 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1); //get the reaction at the first node
            Assert.AreEqual(-5.774, reactionAtNode1.X, 0.001); // Check that we have calculated a reaction of 10/SQRT(3) Newtons in the X axis.
            Assert.AreEqual(-10, reactionAtNode1.Z,  0.001); // and a reaction of -10 Newtons in the Y axis.
        }
Exemple #44
0
        public void CalculateModelOfThreeSpringsWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode node1 = model.NodeFactory.Create(0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);

            FiniteElementNode node3 = model.NodeFactory.Create(2.0);
            model.ConstrainNode(node3, DegreeOfFreedom.X);

            FiniteElementNode node4 = model.NodeFactory.Create(2.00001); ///TODO allow multiple nodes to be added in the same location
            model.ConstrainNode(node4, DegreeOfFreedom.X);

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node3, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node4, 1);

            ForceVector externalForce = model.ForceFactory.Create(10);
            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);
            Assert.AreEqual(3.333, displacementAtNode2.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);
            Assert.AreEqual(-3.333, reactionAtNode1.X, 0.001);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);
            Assert.AreEqual(-3.333, reactionAtNode3.X, 0.001);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);
            Assert.AreEqual(-3.333, reactionAtNode4.X, 0.001);
        }
Exemple #45
0
        public void ThreeNodeSimplySupportedBeam()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(1, 0, 0);

            FiniteElementNode node3 = model.NodeFactory.Create(2, 0, 0);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);
            model.ConstrainNode(node3, DegreeOfFreedom.XX);

            IMaterial material = new GenericElasticMaterial(0, 10000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2,node3,material,section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);
            model.ApplyForceToNode(force, node2);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);

            Stiffness.GlobalModelStiffnessMatrixBuilder gmsmb = new SharpFE.Stiffness.GlobalModelStiffnessMatrixBuilder(model);
            Console.WriteLine(gmsmb.BuildKnownForcesUnknownDisplacementStiffnessMatrix());

            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            Console.WriteLine("node1Displacement : " + node1Displacement);

            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            Console.WriteLine("node2Displacement : " + node2Displacement);

            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            Console.WriteLine("node3Displacement : " + node3Displacement);

            ReactionVector node1Reaction = results.GetReaction(node1);
            Console.WriteLine("node1Reaction : " + node1Reaction);

            ReactionVector node3Reaction = results.GetReaction(node3);
            Console.WriteLine("node5Reaction : " + node3Reaction);

            Assert.AreEqual(-0.000833333, node2Displacement.Z, 0.0000001);
            Assert.AreEqual(5000, node1Reaction.Z, 0.001);
            Assert.AreEqual(5000, node3Reaction.Z, 0.001);
            Assert.AreEqual(0, node2Displacement.YY, 0.0001);
            Assert.AreEqual( 0.00125, node1Displacement.YY, 0.0000001);
            Assert.AreEqual(-0.00125, node3Displacement.YY, 0.0000001);
        }
        public void CalculateGridOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Slab2D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4);

            FiniteElementNode node2 = model.NodeFactory.Create(4, 0);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);
            model.ConstrainNode(node2, DegreeOfFreedom.YY);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 0);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);
            model.ConstrainNode(node3, DegreeOfFreedom.XX);
            model.ConstrainNode(node3, DegreeOfFreedom.YY);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 4);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.02, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -20000, 0, 0, 0);
            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector node2Reaction = results.GetReaction(node2);
            ReactionVector node3Reaction = results.GetReaction(node3);
            ReactionVector node4Reaction = results.GetReaction(node4);

            Assert.AreEqual(-0.0033, node1Displacement.Z, 0.0001);
            Assert.AreEqual(-0.0010, node1Displacement.XX, 0.0001);
            Assert.AreEqual( 0.0010, node1Displacement.YY, 0.0001);

            Assert.AreEqual(10794, node2Reaction.Z, 1);
            Assert.AreEqual(31776, node2Reaction.XX, 1);
            Assert.AreEqual(-1019, node2Reaction.YY, 1);

            Assert.AreEqual(-1587, node3Reaction.Z, 1);
            Assert.AreEqual(4030, node3Reaction.XX, 1);
            Assert.AreEqual(-4030, node3Reaction.YY, 1);

            Assert.AreEqual(10794, node4Reaction.Z, 1);
            Assert.AreEqual(1019, node4Reaction.XX, 1);
            Assert.AreEqual(-31776, node4Reaction.YY, 1);
        }
Exemple #47
0
 /// <summary>
 /// Initializes a new instance of the <see cref="LinearSolver" /> class.
 /// </summary>
 /// <param name="modelToSolve">The model on which to run the analysis</param>
 public LinearSolver(FiniteElementModel modelToSolve)
     : this(modelToSolve, new GlobalModelStiffnessMatrixBuilder(modelToSolve))
 {
     // empty
 }
 /// <summary>
 /// 
 /// </summary>
 /// <param name="modelToSolve"></param>
 public MatrixInversionLinearSolver(FiniteElementModel modelToSolve)
     : base(modelToSolve)
 {
     // empty
 }
Exemple #49
0
        public void Calculate2DTrussOf11BarsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);

            //build geometric model and constraints

            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(0, 3);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(3, 0);

            FiniteElementNode node4 = model.NodeFactory.CreateFor2DTruss(3, 3);

            FiniteElementNode node5 = model.NodeFactory.CreateFor2DTruss(6, 0);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);

            FiniteElementNode node6 = model.NodeFactory.CreateFor2DTruss(6, 3);

            IMaterial material = new GenericElasticMaterial(0, 70000000, 0, 0);
            ICrossSection section = new SolidRectangle(0.03, 0.01);

            LinearTruss truss1 = model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            LinearTruss truss2 = model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            LinearTruss truss3 = model.ElementFactory.CreateLinearTruss(node2, node3, material, section);
            LinearTruss truss4 = model.ElementFactory.CreateLinearTruss(node2, node4, material, section);
            LinearTruss truss5 = model.ElementFactory.CreateLinearTruss(node1, node4, material, section);
            LinearTruss truss6 = model.ElementFactory.CreateLinearTruss(node3, node4, material, section);
            LinearTruss truss7 = model.ElementFactory.CreateLinearTruss(node3, node6, material, section);
            LinearTruss truss8 = model.ElementFactory.CreateLinearTruss(node4, node5, material, section);
            LinearTruss truss9 = model.ElementFactory.CreateLinearTruss(node4, node6, material, section);
            LinearTruss truss10 = model.ElementFactory.CreateLinearTruss(node3, node5, material, section);
            LinearTruss truss11 = model.ElementFactory.CreateLinearTruss(node5, node6, material, section);

            //apply forces

            ForceVector force50Z = model.ForceFactory.CreateForTruss(0, -50000);
            model.ApplyForceToNode(force50Z, node2);
            model.ApplyForceToNode(force50Z, node6);

            ForceVector force100Z = model.ForceFactory.CreateForTruss(0, -100000);
            model.ApplyForceToNode(force100Z, node4);

            //solve model
            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            //assert results

            ReactionVector reactionAtNode1 = results.GetReaction(node1);
            Assert.AreEqual(0, reactionAtNode1.X, 1);
            Assert.AreEqual(100000, reactionAtNode1.Z, 1);

            ReactionVector reactionAtNode5 = results.GetReaction(node1);
            Assert.AreEqual(0, reactionAtNode5.X, 1);
            Assert.AreEqual(100000, reactionAtNode5.Z, 1);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);
            Assert.AreEqual(7.1429, displacementAtNode2.X, 0.001);
            Assert.AreEqual(-9.0386, displacementAtNode2.Z, 0.001);

            DisplacementVector displacementAtNode3 = results.GetDisplacement(node3);
            Assert.AreEqual(5.2471, displacementAtNode3.X, 0.001);
            Assert.AreEqual(-16.2965, displacementAtNode3.Z, 0.001);

            DisplacementVector displacementAtNode4 = results.GetDisplacement(node4);
            Assert.AreEqual(5.2471, displacementAtNode4.X, 0.001);
            Assert.AreEqual(-20.0881, displacementAtNode4.Z, 0.001);

            DisplacementVector displacementAtNode5 = results.GetDisplacement(node5);
            Assert.AreEqual(10.4942, displacementAtNode5.X, 0.001);
            Assert.AreEqual(0, displacementAtNode5.Z, 0.001);

            DisplacementVector displacementAtNode6 = results.GetDisplacement(node6);
            Assert.AreEqual(3.3513, displacementAtNode6.X, 0.001);
            Assert.AreEqual(-9.0386, displacementAtNode6.Z, 0.001);
        }
Exemple #50
0
        public void SpringInXAxis()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D); // we will create and analyze a 1D spring in the vertical
            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0); // create a node at the origin
            model.ConstrainNode(node1, DegreeOfFreedom.X); // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z); // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 0); // create a second node at a distance 1 metre along the X axis.
            model.ConstrainNode(node2, DegreeOfFreedom.Z); // fix this node from moving along the Y-axis.  It is still free to move along the X-axis however.

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(10, 0); // Create a force of 10 Newtons along the x-axis.
            model.ApplyForceToNode(force, node2); // Apply that force to the second node

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve(); // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);  // get the displacement at the second node
            Assert.AreEqual(0.01, displacementAtNode2.X); // check that we calculated 0.010 metres (10 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1); //get the reaction at the first node
            Assert.AreEqual(-10, reactionAtNode1.X); // Check that we have calculated a reaction of -10 Newtons in the X axis.
            Assert.AreEqual(0, reactionAtNode1.Z); // and a reaction of 0 Newtons in the Y axis.
        }
Exemple #51
0
        public void SimplySupportedBeam()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0, 0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);

            ForceVector moment = model.ForceFactory.Create(0, 0, 0, 0, 10000, 0);
            model.ApplyForceToNode(moment, node1);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            // check the results
            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);
            Assert.AreEqual(0, displacementAtNode1.Z, 0.001);
            Assert.AreEqual(0.00007936, displacementAtNode1.YY, 0.000001);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);
            Assert.AreEqual(0, displacementAtNode2.Z, 0.001);
            Assert.AreEqual(-0.00003968, displacementAtNode2.YY, 0.000001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);
            Assert.AreEqual(-10000, reactionAtNode1.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode1.YY, 0.001);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);
            Assert.AreEqual(10000, reactionAtNode2.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode2.YY, 0.001);
        }
        public void Calculate3DPortalFrameOf8BeamsAnd48Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.Create(0, -4, 0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(4, -4, 0);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(4, 0, 0);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            FiniteElementNode node5 = model.NodeFactory.Create(0, 0, 5);
            FiniteElementNode node6 = model.NodeFactory.Create(0, -4, 5);
            FiniteElementNode node7 = model.NodeFactory.Create(4, -4, 5);
            FiniteElementNode node8 = model.NodeFactory.Create(4, 0, 5);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.02, 0.0001, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node5, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node6, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node7, material, section);
            model.ElementFactory.CreateLinear3DBeam(node4, node8, material, section);
            model.ElementFactory.CreateLinear3DBeam(node5, node6, material, section);
            model.ElementFactory.CreateLinear3DBeam(node6, node7, material, section);
            model.ElementFactory.CreateLinear3DBeam(node7, node8, material, section);
            model.ElementFactory.CreateLinear3DBeam(node8, node5, material, section);

            ForceVector force = model.ForceFactory.Create(-15000, 0, 0, 0, 0, 0);
            model.ApplyForceToNode(force, node7);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector node1Reaction = results.GetReaction(node1);
            ReactionVector node2Reaction = results.GetReaction(node2);
            ReactionVector node3Reaction = results.GetReaction(node3);
            ReactionVector node4Reaction = results.GetReaction(node4);
            DisplacementVector node5Displacement = results.GetDisplacement(node5);
            DisplacementVector node6Displacement = results.GetDisplacement(node6);
            DisplacementVector node7Displacement = results.GetDisplacement(node7);
            DisplacementVector node8Displacement = results.GetDisplacement(node8);

            //            Console.WriteLine("\nNode5 displacement : \n" + node5Displacement);
            //            Console.WriteLine("\nNode6 displacement : \n" + node6Displacement);
            //            Console.WriteLine("\nNode7 displacement : \n" + node7Displacement);
            //            Console.WriteLine("\nNode8 displacement : \n" + node8Displacement);

            Assert.Inconclusive("The below tests pass for y-displacements, but fail for x-displacements");
            Assert.AreEqual(-0.0026743, node5Displacement.X, 0.0001);
            Assert.AreEqual(0.0038697, node5Displacement.Y, 0.0001);
            Assert.AreEqual(-0.0107708, node6Displacement.X, 0.0001);
            Assert.AreEqual(0.0038697, node6Displacement.Y, 0.0001);
            Assert.AreEqual(-0.0107780, node7Displacement.X, 0.0001);
            Assert.AreEqual(-0.0038697, node7Displacement.Y, 0.0001);
            Assert.AreEqual(-0.0026743, node8Displacement.X, 0.0001);
            Assert.AreEqual(-0.0038697, node8Displacement.Y, 0.0001);
        }
Exemple #53
0
        public void ThreeNodeCantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(0, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);
            model.ConstrainNode(node1, DegreeOfFreedom.ZZ);

            FiniteElementNode node2 = model.NodeFactory.Create(1.5, 0, 0);
            FiniteElementNode node3 = model.NodeFactory.Create(3.0, 0, 0);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);
            model.ApplyForceToNode(force, node3);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction = results.GetReaction(node1);
            Assert.AreEqual(10000, reaction.Z, 0.001);
            Assert.AreEqual(-30000, reaction.YY, 0.001);

            DisplacementVector displacement2 = results.GetDisplacement(node2);
            Assert.AreEqual(-0.000670, displacement2.Z, 0.0005);
            Assert.AreEqual(0.000804, displacement2.YY, 0.0001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);
            Assert.AreEqual(-0.00214, displacement3.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement3.YY, 0.0001);
        }
Exemple #54
0
        public void Setup()
        {
            SUT = new FiniteElementModel(ModelType.Truss1D);

            node1 = SUT.NodeFactory.Create(0);
            node2 = SUT.NodeFactory.Create(1);
            node3 = SUT.NodeFactory.Create(2);
            spring1 = SUT.ElementFactory.CreateLinearConstantSpring(node1, node2, 3);
            spring2 = SUT.ElementFactory.CreateLinearConstantSpring(node2, node3, 2);

            SUT.ConstrainNode(node1, DegreeOfFreedom.X);
            SUT.ConstrainNode(node3, DegreeOfFreedom.X);

            force1 = SUT.ForceFactory.Create(20);
            SUT.ApplyForceToNode(force1, node2);
        }
Exemple #55
0
        public void Calculate2DPortalFrameOf3BeamsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode node1 = model.NodeFactory.Create(-3, 0, 0);
            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(-3, 0, 6);

            FiniteElementNode node3 = model.NodeFactory.Create(3, 0, 6);

            FiniteElementNode node4 = model.NodeFactory.Create(3, 0, 0);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 84000000);
            ICrossSection section = new GenericCrossSection(0.0002, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);

            ForceVector force2 = model.ForceFactory.Create(15000, 0, 0, 0, -10000, 0);
            model.ApplyForceToNode(force2, node2);

            IFiniteElementSolver solver = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            ReactionVector node1Reaction = results.GetReaction(node1);
            ReactionVector node4Reaction = results.GetReaction(node4);

            Assert.AreEqual(0.0052843, node2Displacement.X, 0.0001);
            Assert.AreEqual(0.0006522, node2Displacement.Z, 0.0001);
            Assert.AreEqual(0.0005, node2Displacement.YY, 0.0001);

            Assert.AreEqual(0.0044052, node3Displacement.X, 0.0001);
            Assert.AreEqual(-0.0006522, node3Displacement.Z, 0.0001);
            Assert.AreEqual(0.0006, node3Displacement.YY, 0.0001);

            Assert.AreEqual(-9000, node1Reaction.X, 500);
            Assert.AreEqual(-5000, node1Reaction.Z, 500);
            Assert.AreEqual(-30022, node1Reaction.YY, 500);

            Assert.AreEqual(-6000, node4Reaction.X, 500);
            Assert.AreEqual(5000, node4Reaction.Z, 500);
            Assert.AreEqual(-22586, node4Reaction.YY, 500);
        }
 public GlobalModelStiffnessMatrixBuilder(FiniteElementModel model)
     : this(model, model)
 {
     // empty
 }
Exemple #57
0
        public void Calculate3DTrussOf4BarsAnd15Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss3D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4, 3);

            FiniteElementNode node2 = model.NodeFactory.Create(0, 4, 0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 4, 6);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(4, 0, 3);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            FiniteElementNode node5 = model.NodeFactory.Create(8, -1, 1);
            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section = new SolidRectangle(0.01, 0.01);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node5, material, section);

            ForceVector externalForce = model.ForceFactory.Create(0, -10000, 0, 0, 0, 0);
            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);
            Assert.AreEqual(270.9, reactionAtNode2.X, 1);
            Assert.AreEqual(0, reactionAtNode2.Y, 1);
            Assert.AreEqual(203.2, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);
            Assert.AreEqual(1354.6, reactionAtNode3.X, 1);
            Assert.AreEqual(0, reactionAtNode3.Y, 1);
            Assert.AreEqual(-1016, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);
            Assert.AreEqual(0, reactionAtNode4.X, 1);
            Assert.AreEqual(7968.1, reactionAtNode4.Y, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            ReactionVector reactionAtNode5 = results.GetReaction(node5);
            Assert.AreEqual(-1625.5, reactionAtNode5.X, 1);
            Assert.AreEqual(2031.9, reactionAtNode5.Y, 1);
            Assert.AreEqual(812.8, reactionAtNode5.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);
            Assert.AreEqual(-0.0003024, displacementAtNode1.X, 0.0001); //NOTE the results given in the book are 1E03
            Assert.AreEqual(-0.0015177, displacementAtNode1.Y, 0.0001);
            Assert.AreEqual(0.0002688, displacementAtNode1.Z, 0.0001);
        }
Exemple #58
0
        public void Calculate2DTrussOf3BarsAnd8Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);

            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(0, 10);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(10, 10);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.CreateFor2DTruss(10, 0);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial material = new GenericElasticMaterial(0, 30000000, 0, 0);
            ICrossSection section = new SolidRectangle(2, 1);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);

            ForceVector externalForce = model.ForceFactory.CreateForTruss(0, -10000);
            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);
            Assert.AreEqual(0, reactionAtNode2.X, 1);
            Assert.AreEqual(7929, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);
            Assert.AreEqual(2071, reactionAtNode3.X, 1);
            Assert.AreEqual(2071, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);
            Assert.AreEqual(-2071, reactionAtNode4.X, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);
            Assert.AreEqual( 0.00035, displacementAtNode1.X, 0.00001);  ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
            Assert.AreEqual(-0.00132, displacementAtNode1.Z, 0.00001);  ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
        }
 public GlobalModelStiffnessMatrixBuilder(FiniteElementModel model)
     : this(model, model)
 {
     // empty
 }
Exemple #60
0
        public void Calculate3DTrussOf3BarsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss3D);

            FiniteElementNode node1 = model.NodeFactory.Create(72,0,0);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);

            FiniteElementNode node2 = model.NodeFactory.Create(0, 36, 0);
            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 36, 72);
            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 0, -48);
            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial material = new GenericElasticMaterial(0, 1200000, 0, 0);
            ICrossSection section1 = new SolidRectangle(1, 0.302);
            ICrossSection section2 = new SolidRectangle(1, 0.729); ///NOTE example also refers to this as A1.  Assume errata in book
            ICrossSection section3 = new SolidRectangle(1, 0.187); ///NOTE example also refers to this as A1.  Assume errata in book

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section1);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section2);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section3);

            ForceVector externalForce = model.ForceFactory.Create(0, 0, -1000, 0, 0, 0);
            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode1 = results.GetReaction(node1);
            Assert.AreEqual(0, reactionAtNode1.X, 1);
            Assert.AreEqual(-223.1632, reactionAtNode1.Y, 1);
            Assert.AreEqual(0, reactionAtNode1.Z, 1);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);
            Assert.AreEqual(256.1226, reactionAtNode2.X, 1);
            Assert.AreEqual(-128.0613, reactionAtNode2.Y, 1);
            Assert.AreEqual(0, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);
            Assert.AreEqual(-702.4491, reactionAtNode3.X, 1);
            Assert.AreEqual(351.2245, reactionAtNode3.Y, 1);
            Assert.AreEqual(702.4491, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);
            Assert.AreEqual(446.3264, reactionAtNode4.X, 1);
            Assert.AreEqual(0, reactionAtNode4.Y, 1);
            Assert.AreEqual(297.5509, reactionAtNode4.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);
            Assert.AreEqual(-0.0711, displacementAtNode1.X, 0.0001);
            Assert.AreEqual(0, displacementAtNode1.Y, 0.0001);
            Assert.AreEqual(-0.2662, displacementAtNode1.Z, 0.0001);
        }