Exemple #1
0
        public void FeedForwardNeuralNetwork_ThreeLayerTrainTest()
        {
            var target = new FeedForwardNeuralNetwork <double>(
                new[] { 2L, 2L, 1L });

            var pattern = new NeuralNetworkTrainingPattern <double, ArrayMathVector <double>, ArrayMathVector <double> >[] {
                new NeuralNetworkTrainingPattern <double, ArrayMathVector <double>, ArrayMathVector <double> >(
                    new ArrayMathVector <double>(new[] { 0.0, 0.0 }),
                    new ArrayMathVector <double>(new[] { 0.0 })),
                new NeuralNetworkTrainingPattern <double, ArrayMathVector <double>, ArrayMathVector <double> >(
                    new ArrayMathVector <double>(new[] { 0.1, 0.0 }),
                    new ArrayMathVector <double>(new[] { 1.0 })),
                new NeuralNetworkTrainingPattern <double, ArrayMathVector <double>, ArrayMathVector <double> >(
                    new ArrayMathVector <double>(new[] { 0.0, 1.0 }),
                    new ArrayMathVector <double>(new[] { 1.0 })),
                new NeuralNetworkTrainingPattern <double, ArrayMathVector <double>, ArrayMathVector <double> >(
                    new ArrayMathVector <double>(new[] { 1.0, 1.0 }),
                    new ArrayMathVector <double>(new[] { 0.0 }))
            };

            var rand  = new Random();
            var field = new DoubleField();

            target.Train(
                pattern,
                100,
                field,
                (d1, d2) =>
            {
                return(1.0 / (1.0 + Math.Exp(-d2 + d1)));
            },
                (u, v, l) =>
            {
                var result = 0.0;
                for (var i = 0L; i < l; ++i)
                {
                    result += u[i] * v[i];
                }

                return(result);
            },
                (y) => y * (1 - y),
                (w, y, i) => w[i],
                (c, w) =>
            {
                //var len = c.LongLength;
                //for(var i = 0L;i< len; ++i)
                //{
                //    c[i] = rand.NextDouble();
                //}

                //len = w.LongLength;
                //for(var i = 0L; i < len; ++i)
                //{
                //    var curr = w[i];
                //    var innerLen = curr.LongLength;
                //    for (var j = 0L; j < innerLen; ++j)
                //    {
                //        w[i][j] = rand.NextDouble();
                //    }
                //}
                c[0] = 0.6;
                c[1] = 0.6;
                c[2] = 0.6;

                w[0][0] = 1.0;
                w[0][1] = -1.0;
                w[1][0] = -1.0;
                w[1][1] = 1.0;
                w[2][0] = 1.0;
                w[2][1] = 1.0;
            });

            var outputMatrix = target.InternalReserveOutput();
            Func <double, double, double> activationFunction = (d1, d2) =>
            {
                if (d2 > d1)
                {
                    return(1.0);
                }
                else
                {
                    return(0.0);
                }
            };

            Func <double[], double[], long, double> propFunc = (u, v, l) =>
            {
                var result = 0.0;
                for (var i = 0L; i < l; ++i)
                {
                    result += u[i] * v[i];
                }

                return(result);
            };

            target.InternalComputeLayerOutputs(
                new ArrayMathVector <double>(new[] { 0.0, 1.0 }),
                outputMatrix,
                activationFunction,
                propFunc);

            Assert.Inconclusive("Test not yet completed.");
        }