public void FitTest1() { double[] values = { 0, 1, 2, 4, 2, 3, 5, 7, 4, 3, 2, 1, 4, }; var exp = new ExponentialDistribution(); exp.Fit(values); string actual; var cultureInfo = CultureInfo.GetCultureInfo("fr-FR"); #if NETCORE System.Globalization.CultureInfo.DefaultThreadCurrentCulture = cultureInfo; System.Globalization.CultureInfo.DefaultThreadCurrentUICulture = cultureInfo; #else Thread.CurrentThread.CurrentCulture = cultureInfo; #endif actual = exp.ToString("G3", CultureInfo.InvariantCulture); Assert.AreEqual("Exp(x; λ = 0.342)", actual); actual = exp.ToString("G3"); Assert.AreEqual("Exp(x; λ = 0,342)", actual); actual = exp.ToString(CultureInfo.InvariantCulture); Assert.AreEqual("Exp(x; λ = 0.342105263157895)", actual); actual = exp.ToString(); Assert.AreEqual("Exp(x; λ = 0,342105263157895)", actual); }
public void FitTest1() { double[] values = { 0, 1, 2, 4, 2, 3, 5, 7, 4, 3, 2, 1, 4, }; var exp = new ExponentialDistribution(); exp.Fit(values); string actual; Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo("fr-FR"); actual = exp.ToString("G3", CultureInfo.InvariantCulture); Assert.AreEqual("Exp(x; λ = 0.342)", actual); actual = exp.ToString("G3"); Assert.AreEqual("Exp(x; λ = 0,342)", actual); actual = exp.ToString(CultureInfo.InvariantCulture); Assert.AreEqual("Exp(x; λ = 0.342105263157895)", actual); actual = exp.ToString(); Assert.AreEqual("Exp(x; λ = 0,342105263157895)", actual); }
private UnivariateContinuousDistribution FitDistribution(double [] samples) { if (samples.Length < 10) { return(new EmpiricalDistribution(samples)); } else { var exp = new ExponentialDistribution(); // new LognormalDistribution(); // exp.Fit(samples); return(exp); } }
public FuncionExponencial(double[] eventos) : base(eventos) { try { DistribucionContinua = new ExponentialDistribution(); DistribucionContinua.Fit(eventos); this.L = ((ExponentialDistribution)DistribucionContinua).Rate.ToString("0.0000"); Resultado = new ResultadoAjuste(StringFDP, StringInversa, DistribucionContinua.StandardDeviation, DistribucionContinua.Mean, DistribucionContinua.Variance, this); } catch (Exception) { Resultado = null; } }