/// <summary>
        /// Permite efectuar a leitura de um polinómio a partir de texto.
        /// </summary>
        /// <remarks>
        /// Se a leitura não for bem sucedida, é lançada uma excep~ção.
        /// </remarks>
        /// <param name="polynomial">O texto.</param>
        /// <returns>O polinómio.</returns>
        public UnivariatePolynomialNormalForm <int> Read(string polynomial)
        {
            var integerDomain   = new IntegerDomain();
            var integerParser   = new IntegerParser <string>();
            var conversion      = new ElementToElementConversion <int>();
            var polInputReader  = new StringReader(polynomial);
            var polSymbolReader = new StringSymbolReader(polInputReader, false);
            var polParser       = new UnivariatePolynomialReader <int, CharSymbolReader <string> >(
                "x",
                integerParser,
                integerDomain);

            var result = default(UnivariatePolynomialNormalForm <int>);

            if (polParser.TryParsePolynomial(polSymbolReader, conversion, out result))
            {
                // O polinómio foi lido com sucesso.
                return(result);
            }
            else
            {
                // Não é possível ler o polinómio.
                throw new Exception("Can't read integer polynomial.");
            }
        }
        public void RunTest_IntegerNumbersRhoAlg()
        {
            var integerNumber = new IntegerDomain();
            var integerParser = new IntegerParser <string>();
            var conversion    = new ElementToElementConversion <int>();
            var variableName  = "x";
            var testPols      = new List <UnivariatePolynomialNormalForm <int> >();

            testPols.Add(TestsHelper.ReadUnivarPolynomial("x^2+1", integerNumber, integerParser, conversion, variableName));
            testPols.Add(TestsHelper.ReadUnivarPolynomial("x^2+x+1", integerNumber, integerParser, conversion, variableName));

            var rhoAlgorithm = new PollardRhoAlgorithm <int>(
                testPols,
                new ModularIntegerFieldFactory(),
                integerNumber);
            var factorizationTarget = new DecompositionFactorizationAlgorithm <int, int>(
                rhoAlgorithm,
                1,
                integerNumber,
                integerNumber);
            var value    = 72;
            var expected = new Dictionary <int, int>();

            expected.Add(2, 3);
            expected.Add(3, 2);
            var actual = factorizationTarget.Run(value);

            CollectionAssert.AreEqual(expected, actual);
        }
Exemple #3
0
        public void ReplaceTest_Integer()
        {
            // Representação dos polinómios.
            var polynomText  = "x^5+2*x^4+3*x^3+4*x^2+5*x+6";
            var variableName = "x";

            // Estabelece os domínios.
            var integerDomain = new IntegerDomain();

            // Estabelece os conversores.
            var integerToIntegerConv = new ElementToElementConversion <int>();

            // Estabelece os leitores individuais.
            var integerParser = new IntegerParser <string>();

            // Estabelece os polinómios.
            var integerPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                integerDomain,
                integerParser,
                integerToIntegerConv,
                variableName);
            var integerReplaceValues  = new int[] { 0, 1, 2, 3 };
            var integerExpectedValues = new int[] { 6, 21, 120, 543 };

            for (int i = 0; i < integerReplaceValues.Length; ++i)
            {
                var integerActualValue = integerPolynomial.Replace(integerReplaceValues[i], integerDomain);
                Assert.AreEqual(integerExpectedValues[i], integerActualValue);
            }
        }
        public void RunTest_IntegerPolynomial()
        {
            var    integerDomain      = new IntegerDomain();
            var    fractionField      = new FractionField <int>(integerDomain);
            var    integerParser      = new IntegerParser <string>();
            var    conversion         = new ElementToElementConversion <int>();
            var    fractionConversion = new ElementFractionConversion <int>(integerDomain);
            string variableName       = "x";
            var    univarPolDomain    = new UnivarPolynomEuclideanDomain <Fraction <int> >(
                variableName,
                fractionField);

            var lagAlg     = new LagrangeAlgorithm <UnivariatePolynomialNormalForm <Fraction <int> > >(univarPolDomain);
            var firstValue = TestsHelper.ReadFractionalCoeffsUnivarPol <int, IntegerDomain>(
                "(x-1/2)*(x+1/3)",
                integerDomain,
                integerParser,
                fractionConversion,
                variableName);

            var secondValue = TestsHelper.ReadFractionalCoeffsUnivarPol <int, IntegerDomain>(
                "(x-1/2)*(x-1)",
                integerDomain,
                integerParser,
                fractionConversion,
                variableName);

            var gcd = TestsHelper.ReadFractionalCoeffsUnivarPol <int, IntegerDomain>(
                "x-1/2",
                integerDomain,
                integerParser,
                fractionConversion,
                variableName);
            var result = lagAlg.Run(firstValue, secondValue);

            var mainGcdCoeff = result.GreatestCommonDivisor.GetLeadingCoefficient(fractionField);
            var monicGcd     = result.GreatestCommonDivisor.Multiply(
                fractionField.MultiplicativeInverse(mainGcdCoeff),
                fractionField);

            Assert.AreEqual(gcd, monicGcd);

            var firstTermExpression  = univarPolDomain.Multiply(result.FirstFactor, result.FirstItem);
            var secondTermExpression = univarPolDomain.Multiply(result.SecondFactor, result.SecondItem);
            var actualExpression     = univarPolDomain.Add(firstTermExpression, secondTermExpression);

            Assert.AreEqual(result.GreatestCommonDivisor, actualExpression);

            actualExpression = univarPolDomain.Multiply(result.GreatestCommonDivisor, result.FirstCofactor);
            Assert.AreEqual(result.FirstItem, actualExpression);

            actualExpression = univarPolDomain.Multiply(result.GreatestCommonDivisor, result.SecondCofactor);
            Assert.AreEqual(result.SecondItem, actualExpression);
        }
Exemple #5
0
        public void ReplaceTest_ReplaceByMatrixWithMatrixAlgebra()
        {
            // Representação dos polinómios.
            var polynomText  = "x^2 + 2*x + 1";
            var variableName = "x";

            var integerDomain        = new IntegerDomain();
            var integerToIntegerConv = new ElementToElementConversion <int>();
            var integerParser        = new IntegerParser <string>();
            var fractionField        = new FractionField <int>(integerDomain);
            var fractionFieldParser  = new FieldDrivenExpressionParser <Fraction <int> >(
                new SimpleElementFractionParser <int>(integerParser, integerDomain),
                fractionField);

            var polynomial = TestsHelper.ReadUnivarPolynomial <Fraction <int> >(
                polynomText,
                fractionField,
                fractionFieldParser,
                new ElementFractionConversion <int>(integerDomain),
                variableName);

            // Leitura da matriz.
            var matrix = TestsHelper.ReadMatrix <Fraction <int> >(
                2,
                2,
                "[[1/2+1/3,1/2-1/3],[1/5+1/4,1/5-1/4]]",
                (i, j) => new ArrayMathMatrix <Fraction <int> >(i, j),
                fractionFieldParser);

            var matrixAlgebra = new GeneralMatrixAlgebra <Fraction <int> >(
                2,
                new ArrayMathMatrixFactory <Fraction <int> >(),
                fractionField);
            var actual   = polynomial.Replace(matrix, matrixAlgebra);
            var expected = TestsHelper.ReadMatrix <Fraction <int> >(
                2,
                2,
                "[[1237/360,167/360],[501/400,391/400]]",
                (i, j) => new ArrayMathMatrix <Fraction <int> >(i, j),
                fractionFieldParser);

            for (int i = 0; i < 2; ++i)
            {
                for (int j = 0; j < 2; ++j)
                {
                    Assert.AreEqual(expected[i, j], actual[i, j]);
                }
            }
        }
Exemple #6
0
        public void ReplaceTest_ReplaceByFraction()
        {
            // Representação dos polinómios.
            var polynomText  = "x^5+2*x^4+3*x^3+4*x^2+5*x+6";
            var variableName = "x";

            // Estabelece os domínios.
            var integerDomain = new IntegerDomain();

            // Estabelece os conversores.
            var integerToIntegerConv = new ElementToElementConversion <int>();

            // Estabelece os leitores individuais.
            var integerParser = new IntegerParser <string>();

            var fractionField = new FractionField <int>(integerDomain);

            var integerFractionAddOp = new ElementFractionAddOper <int>(integerDomain);

            // Estabelece os polinómios.
            var integerPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                integerDomain,
                integerParser,
                integerToIntegerConv,
                variableName);
            var fractionValues = new Fraction <int>[] {
                new Fraction <int>(0, 1, integerDomain),
                new Fraction <int>(1, 1, integerDomain),
                new Fraction <int>(1, 2, integerDomain),
                new Fraction <int>(1, 3, integerDomain)
            };

            var fractionExpectedValues = new Fraction <int>[] {
                new Fraction <int>(6, 1, integerDomain),
                new Fraction <int>(21, 1, integerDomain),
                new Fraction <int>(321, 32, integerDomain),
                new Fraction <int>(2005, 243, integerDomain)
            };

            for (int i = 0; i < fractionValues.Length; ++i)
            {
                var integerActualValue = integerPolynomial.Replace(
                    fractionValues[i],
                    integerFractionAddOp,
                    fractionField);
                Assert.AreEqual(fractionExpectedValues[i], integerActualValue);
            }
        }
Exemple #7
0
        public void RunTest()
        {
            var mainPolText      = "x^3+10*x^2-432*x+5040";
            var firstFactorText  = "x";
            var secondFactorText = "x^2-2";
            var variableName     = "x";
            var prime            = 5;

            var integerDomain     = new IntegerDomain();
            var integerParser     = new IntegerParser <string>();
            var integerConversion = new ElementToElementConversion <int>();

            var mainPol = TestsHelper.ReadUnivarPolynomial(
                mainPolText,
                integerDomain,
                integerParser,
                integerConversion,
                variableName);
            var firstFactor = TestsHelper.ReadUnivarPolynomial(
                firstFactorText,
                integerDomain,
                integerParser,
                integerConversion,
                variableName);
            var secondFactor = TestsHelper.ReadUnivarPolynomial(
                secondFactorText,
                integerDomain,
                integerParser,
                integerConversion,
                variableName);

            // Testa o levantamento linear.
            var linearLift = new LinearLiftAlgorithm <int>(
                new ModularSymmetricIntFieldFactory(),
                new UnivarPolEuclideanDomainFactory <int>(),
                integerDomain);
            var liftingStatus = new LinearLiftingStatus <int>(mainPol, firstFactor, secondFactor, prime);
            var result        = linearLift.Run(liftingStatus, 3);

            Assert.AreEqual(625, liftingStatus.LiftedFactorizationModule);

            var expected = liftingStatus.UFactor.Multiply(liftingStatus.WFactor, new ModularIntegerField(625));
            var actual   = mainPol.ApplyFunction(coeff => this.GetSymmetricRemainder(coeff, 625), integerDomain);

            Assert.AreEqual(expected, actual);
        }
        public void RunTest_TestFactors2()
        {
            var polText      = "x^3+2";
            var variableName = "x";
            var prime        = 5;

            var integerDomain     = new IntegerDomain();
            var integerParser     = new IntegerParser <string>();
            var integerConversion = new ElementToElementConversion <int>();

            // Faz a leitura do polinómio.
            var pol = TestsHelper.ReadUnivarPolynomial(
                polText,
                integerDomain,
                integerParser,
                integerConversion,
                variableName);

            // Testa os factores.
            var integerModule     = new ModularIntegerField(prime);
            var finiteFieldPolAlg = new FiniteFieldPolFactorizationAlgorithm <int>(
                new DenseCondensationLinSysAlgorithm <int>(integerModule),
                integerDomain);
            var result = finiteFieldPolAlg.Run(pol, integerModule);

            var factorsEnumerator = result.Factors.GetEnumerator();

            if (factorsEnumerator.MoveNext())
            {
                var expected = factorsEnumerator.Current;
                while (factorsEnumerator.MoveNext())
                {
                    expected = expected.Multiply(factorsEnumerator.Current, integerModule);
                }

                expected = expected.Multiply(result.IndependentCoeff, integerModule);
                Assert.AreEqual(expected, pol.ApplyFunction(coeff => this.GetSymmetricRemainder(coeff, prime), integerModule));
            }
            else
            {
                Assert.Fail("At least the main polynomial may be regarded as a factor.");
            }
        }
Exemple #9
0
        public void RunTest_IntegerMatrix()
        {
            // A leitura é realizada por colunas.
            var matrixText    = "[[1,-1,2], [3,4,5], [2,1,1]]";
            var integerDomain = new IntegerDomain();
            var variableName  = "x";
            var integerParser = new IntegerParser <string>();
            var conversion    = new ElementToElementConversion <int>();
            var matrix        = TestsHelper.ReadMatrix <int>(
                3,
                3,
                matrixText,
                (i, j) => new ArraySquareMathMatrix <int>(i),
                integerParser,
                true);
            var fastDivFreeCharacPolAlg = new FastDivisionFreeCharPolynomCalculator <int>(variableName, integerDomain);
            var expected = TestsHelper.ReadUnivarPolynomial("x^3-6*x^2+3*x+18", integerDomain, integerParser, conversion, variableName);
            var actual   = fastDivFreeCharacPolAlg.Run(matrix as ISquareMathMatrix <int>);

            Assert.AreEqual(expected, actual);
        }
Exemple #10
0
        public void GetRootPowerSumsTest_Integer()
        {
            // Representação dos polinómios.
            var polynomText  = "(x-3)*(x-2)^2*(x+1)^3";
            var variableName = "x";

            // Estabelece os domínios.
            var integerDomain = new IntegerDomain();

            // Estabelece os conversores.
            var integerToIntegerConv = new ElementToElementConversion <int>();

            // Estabelece os leitores individuais.
            var integerParser = new IntegerParser <string>();

            // Estabelece os polinómios.
            var integerPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                integerDomain,
                integerParser,
                integerToIntegerConv,
                variableName);
            var integerExpectedVector = new ArrayVector <int>(6);

            integerExpectedVector[0] = 4;
            integerExpectedVector[1] = 20;
            integerExpectedVector[2] = 40;
            integerExpectedVector[3] = 116;
            integerExpectedVector[4] = 304;
            integerExpectedVector[5] = 860;
            var integerActualVector = integerPolynomial.GetRootPowerSums(integerDomain);

            Assert.AreEqual(integerExpectedVector.Length, integerActualVector.Length, "Vector lengths aren't equal.");
            for (int i = 0; i < integerActualVector.Length; ++i)
            {
                Assert.AreEqual(integerExpectedVector[i], integerActualVector[i]);
            }
        }
Exemple #11
0
        public void GetElementarySymmetricRepresentationTest()
        {
            var domain       = new IntegerDomain();
            var coeffsParser = new IntegerParser <string>();
            var conversion   = new ElementToElementConversion <int>();

            var dictionary = new Dictionary <int, int>();

            dictionary.Add(5, 2);
            dictionary.Add(0, 2);

            var varDictionary = new Dictionary <int, Tuple <bool, string, int> >();

            varDictionary.Add(1, Tuple.Create(true, "s[1]", 0));

            var symmetric = new SymmetricPolynomial <int>(
                new List <string>()
            {
                "x", "y", "z", "w"
            },
                dictionary,
                1,
                domain);

            var rep      = symmetric.GetElementarySymmetricRepresentation(varDictionary, new IntegerDomain());
            var expanded = rep.GetExpanded(domain);

            var expectedPolText = "5*s4^2*s2+-5*s4*s2^3+5*s4*s3^2+5*s2^2*s3^2+1*s2^5";
            var expected        = TestsHelper.ReadPolynomial(
                expectedPolText,
                domain,
                conversion,
                coeffsParser);

            Assert.AreEqual(expected, expanded);
        }
Exemple #12
0
        public void GetPolynomialDerivativeTest_IntegerPolynomialAsCoefficients()
        {
            var polynomialText           = "(y^2+y+1)*x^3-2*x^2*y+x*(y^5-3)+4";
            var polynomialDerivativeText = "3*(y^2+y+1)*x^2-4*y*x+y^5-3";
            var variableName             = "x";
            var coeffsVariableName       = "y";

            // Os domínios responsáveis pelas operações sobre os inteiros.
            var integerDomain    = new IntegerDomain();
            var longDomain       = new LongDomain();
            var bigIntegerDomain = new BigIntegerDomain();

            // Os leitore sde inteiros
            var integerParser    = new IntegerParser <string>();
            var longParser       = new LongParser <string>();
            var bigIntegerParser = new BigIntegerParser <string>();

            // Definição das conversões.
            var integerConversion    = new ElementToElementConversion <int>();
            var longConversion       = new LongToIntegerConversion();
            var bigIntegerConversion = new BigIntegerToIntegerConversion();

            var integerPolConvertion = new UnivarPolynomNormalFormToIntegerConversion <int>(
                coeffsVariableName,
                integerConversion,
                integerDomain);
            var longPolConvertion = new UnivarPolynomNormalFormToIntegerConversion <long>(
                coeffsVariableName,
                longConversion,
                longDomain);
            var bigIntegerPolConvertion = new UnivarPolynomNormalFormToIntegerConversion <BigInteger>(
                coeffsVariableName,
                bigIntegerConversion,
                bigIntegerDomain);

            // Definição dos anéis polinomiais.
            var integerPolynomialRing    = new UnivarPolynomRing <int>(coeffsVariableName, integerDomain);
            var longPolynomialRing       = new UnivarPolynomRing <long>(coeffsVariableName, longDomain);
            var bigIntegerPolynomialRing = new UnivarPolynomRing <BigInteger>(coeffsVariableName, bigIntegerDomain);

            // Definição dos leitores polinomiais.
            var integerPolynomialParser = new UnivarPolNormalFormParser <int>(
                coeffsVariableName,
                integerConversion,
                integerParser,
                integerDomain);
            var longPolynomialParser = new UnivarPolNormalFormParser <long>(
                coeffsVariableName,
                longConversion,
                longParser,
                longDomain);
            var bigIntegerPolynomialParser = new UnivarPolNormalFormParser <BigInteger>(
                coeffsVariableName,
                bigIntegerConversion,
                bigIntegerParser,
                bigIntegerDomain);

            // Definição dos testes.
            var integerPolynomial = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <int> >(
                polynomialText,
                integerPolynomialRing,
                integerPolynomialParser,
                integerPolConvertion,
                variableName);
            var integerExpectedPol = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <int> >(
                polynomialDerivativeText,
                integerPolynomialRing,
                integerPolynomialParser,
                integerPolConvertion,
                variableName);
            var integerActualPlynomial = integerPolynomial.GetPolynomialDerivative(integerPolynomialRing);

            Assert.AreEqual(integerExpectedPol, integerActualPlynomial);

            var longPolynomial = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <long> >(
                polynomialText,
                longPolynomialRing,
                longPolynomialParser,
                longPolConvertion,
                variableName);
            var longExpectedPol = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <long> >(
                polynomialDerivativeText,
                longPolynomialRing,
                longPolynomialParser,
                longPolConvertion,
                variableName);
            var longActualPlynomial = longPolynomial.GetPolynomialDerivative(longPolynomialRing);

            Assert.AreEqual(longExpectedPol, longActualPlynomial);

            var bigIntegerPolynomial = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <BigInteger> >(
                polynomialText,
                bigIntegerPolynomialRing,
                bigIntegerPolynomialParser,
                bigIntegerPolConvertion,
                variableName);
            var bigIntegerExpectedPol = TestsHelper.ReadUnivarPolynomial <UnivariatePolynomialNormalForm <BigInteger> >(
                polynomialDerivativeText,
                bigIntegerPolynomialRing,
                bigIntegerPolynomialParser,
                bigIntegerPolConvertion,
                variableName);
            var bigIntegerActualPlynomial = bigIntegerPolynomial.GetPolynomialDerivative(bigIntegerPolynomialRing);

            Assert.AreEqual(bigIntegerExpectedPol, bigIntegerExpectedPol);
        }
Exemple #13
0
        public void GetPolynomialDerivativeTest_SimpleInteger()
        {
            // Representação dos polinómios.
            var polynomText       = "x^1000-2*x^550+1000*x^10+50";
            var polDerivativeText = "1000*x^999-1100*x^549+10000*x^9";

            var variableName = "x";

            // Estabelece os domínios.
            var integerDomain    = new IntegerDomain();
            var longDomain       = new LongDomain();
            var bigIntegerDomain = new BigIntegerDomain();

            // Estabelece os conversores.
            var integerToIntegerConv           = new ElementToElementConversion <int>();
            var integerToLongConv              = new LongToIntegerConversion();
            var integerToBigIntegerConvsersion = new BigIntegerToIntegerConversion();

            // Estabelece os leitores individuais.
            var integerParser    = new IntegerParser <string>();
            var longParser       = new LongParser <string>();
            var bigIntegerParser = new BigIntegerParser <string>();

            // Estabelece os polinómios.
            var integerPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                integerDomain,
                integerParser,
                integerToIntegerConv,
                variableName);
            var integerExpectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                polDerivativeText,
                integerDomain,
                integerParser,
                integerToIntegerConv,
                variableName);
            var integerActualDerivative = integerPolynomial.GetPolynomialDerivative(integerDomain);

            // Verifica se os polinómios são válidos.
            Assert.AreEqual(integerExpectedPolynomial, integerActualDerivative);

            // Estabelece os polinómios.
            var longPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                longDomain,
                longParser,
                integerToLongConv,
                variableName);
            var longExpectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                polDerivativeText,
                longDomain,
                longParser,
                integerToLongConv,
                variableName);
            var longActualDerivative = longPolynomial.GetPolynomialDerivative(longDomain);

            // Verifica se os polinómios são válidos.
            Assert.AreEqual(longExpectedPolynomial, longActualDerivative);

            // Estabelece os polinómios.
            var bigIntegerPolynomial = TestsHelper.ReadUnivarPolynomial(
                polynomText,
                bigIntegerDomain,
                bigIntegerParser,
                integerToBigIntegerConvsersion,
                variableName);
            var bigIntegerExpectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                polDerivativeText,
                bigIntegerDomain,
                bigIntegerParser,
                integerToBigIntegerConvsersion,
                variableName);
            var bigIntegerActualDerivative = bigIntegerPolynomial.GetPolynomialDerivative(bigIntegerDomain);

            // Verifica se os polinómios são válidos.
            Assert.AreEqual(bigIntegerExpectedPolynomial, bigIntegerActualDerivative);
        }
Exemple #14
0
        public void PowerTest_IntegerPolynomial()
        {
            var integerDomain    = new IntegerDomain();
            var longDomain       = new LongDomain();
            var bigIntegerDomain = new BigIntegerDomain();

            var variableName        = "x";
            var intPolDomain        = new UnivarPolynomRing <int>(variableName, integerDomain);
            var longPolDomain       = new UnivarPolynomRing <long>(variableName, longDomain);
            var bigIntegerPolDomain = new UnivarPolynomRing <BigInteger>(variableName, bigIntegerDomain);

            // Leitores
            var integerParser    = new IntegerParser <string>();
            var longParser       = new LongParser <string>();
            var bigIntegerParser = new BigIntegerParser <string>();

            var integerConversion             = new ElementToElementConversion <int>();
            var longToIntegerConversion       = new LongToIntegerConversion();
            var bigIntegerToIntegerConversion = new BigIntegerToIntegerConversion();

            var intPowers = new int[3] {
                2, 3, 4
            };
            var longPowers = new long[3] {
                2, 3, 4
            };
            var bigIntPowers = new BigInteger[3] {
                2, 3, 4
            };

            var polynomialsTexts = new string[3] {
                "x^3-2*x^2+3*x-1", "2*x^2+4*x+4", "x+1"
            };
            var expectedPolinomialsTexts = new string[3] {
                "x^6-4*x^5+10*x^4-14*x^3+13*x^2-6*x+1",
                "8*x^6+48*x^5+144*x^4+256*x^3+288*x^2+192*x+64",
                "x^4+4*x^3+6*x^2+4*x+1"
            };

            // Coeficientes inteiros.
            for (int i = 0; i < 3; ++i)
            {
                var polynomialValue = TestsHelper.ReadUnivarPolynomial(
                    polynomialsTexts[i],
                    integerDomain,
                    integerParser,
                    integerConversion,
                    variableName);

                var expectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                    expectedPolinomialsTexts[i],
                    integerDomain,
                    integerParser,
                    integerConversion,
                    variableName);

                var actualPolynomial = MathFunctions.Power(polynomialValue, intPowers[i], intPolDomain);
                Assert.AreEqual(expectedPolynomial, actualPolynomial);
            }

            // Coeficientes longos.
            for (int i = 0; i < 3; ++i)
            {
                var polynomialValue = TestsHelper.ReadUnivarPolynomial(
                    polynomialsTexts[i],
                    longDomain,
                    longParser,
                    longToIntegerConversion,
                    variableName);

                var expectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                    expectedPolinomialsTexts[i],
                    longDomain,
                    longParser,
                    longToIntegerConversion,
                    variableName);

                var actualPolynomial = MathFunctions.Power(polynomialValue, intPowers[i], longPolDomain);
                Assert.AreEqual(expectedPolynomial, actualPolynomial);
            }

            // Coeficientes correspondentes a inteiros de precisão arbitrária.
            for (int i = 0; i < 3; ++i)
            {
                var polynomialValue = TestsHelper.ReadUnivarPolynomial(
                    polynomialsTexts[i],
                    bigIntegerDomain,
                    bigIntegerParser,
                    bigIntegerToIntegerConversion,
                    variableName);

                var expectedPolynomial = TestsHelper.ReadUnivarPolynomial(
                    expectedPolinomialsTexts[i],
                    bigIntegerDomain,
                    bigIntegerParser,
                    bigIntegerToIntegerConversion,
                    variableName);

                var actualPolynomial = MathFunctions.Power(polynomialValue, intPowers[i], bigIntegerPolDomain);
                Assert.AreEqual(expectedPolynomial, actualPolynomial);
            }
        }