Exemple #1
0
        /**
         * <p>
         * Given a set of polynomial coefficients, compute the roots of the polynomial.  Depending on
         * the polynomial being considered the roots may contain complex number.  When complex numbers are
         * present they will come in pairs of complex conjugates.
         * </p>
         *
         * <p>
         * Coefficients are ordered from least to most significant, e.g: y = c[0] + x*c[1] + x*x*c[2].
         * </p>
         *
         * @param coefficients Coefficients of the polynomial.
         * @return The roots of the polynomial
         */
        public static Complex_F64[] findRoots(params double[] coefficients)
        {
            int N = coefficients.Length - 1;

            // Construct the companion matrix
            DMatrixRMaj c = new DMatrixRMaj(N, N);

            double a = coefficients[N];

            for (int i = 0; i < N; i++)
            {
                c.set(i, N - 1, -coefficients[i] / a);
            }
            for (int i = 1; i < N; i++)
            {
                c.set(i, i - 1, 1);
            }

            // use generalized eigenvalue decomposition to find the roots
            EigenDecomposition_F64 <DMatrixRMaj> evd = DecompositionFactory_DDRM.eig(N, false);

            evd.decompose(c);

            Complex_F64[] roots = new Complex_F64[N];

            for (int i = 0; i < N; i++)
            {
                roots[i] = evd.getEigenvalue(i);
            }

            return(roots);
        }
Exemple #2
0
        /**
         * <p>
         * Puts all the real eigenvectors into the columns of a matrix.  If an eigenvalue is imaginary
         * then the corresponding eigenvector will have zeros in its column.
         * </p>
         *
         * @param eig An eigenvalue decomposition which has already decomposed a matrix.
         * @return An m by m matrix containing eigenvectors in its columns.
         */
        public static DMatrixRMaj createMatrixV(EigenDecomposition_F64 <DMatrixRMaj> eig)
        {
            int N = eig.getNumberOfEigenvalues();

            DMatrixRMaj V = new DMatrixRMaj(N, N);

            for (int i = 0; i < N; i++)
            {
                Complex_F64 c = eig.getEigenvalue(i);

                if (c.isReal())
                {
                    DMatrixRMaj v = eig.getEigenVector(i);

                    if (v != null)
                    {
                        for (int j = 0; j < N; j++)
                        {
                            V.set(j, i, v.get(j, 0));
                        }
                    }
                }
            }

            return(V);
        }
Exemple #3
0
        /**
         * <p>
         * Checks to see if the matrix is positive semidefinite:
         * </p>
         * <p>
         * x<sup>T</sup> A x &ge; 0<br>
         * for all x where x is a non-zero vector and A is a symmetric matrix.
         * </p>
         *
         * @param A square symmetric matrix. Not modified.
         *
         * @return True if it is positive semidefinite and false if it is not.
         */
        public static bool isPositiveSemidefinite(DMatrixRMaj A)
        {
            if (!isSquare(A))
            {
                return(false);
            }

            EigenDecomposition_F64 <DMatrixRMaj> eig = DecompositionFactory_DDRM.eig(A.numCols, false);

            if (eig.inputModified())
            {
                A = (DMatrixRMaj)A.copy();
            }
            eig.decompose(A);

            for (int i = 0; i < A.numRows; i++)
            {
                Complex_F64 v = eig.getEigenvalue(i);

                if (v.getReal() < 0)
                {
                    return(false);
                }
            }

            return(true);
        }
Exemple #4
0
        /**
         * <p>
         * A diagonal matrix where real diagonal element contains a real eigenvalue.  If an eigenvalue
         * is imaginary then zero is stored in its place.
         * </p>
         *
         * @param eig An eigenvalue decomposition which has already decomposed a matrix.
         * @return A diagonal matrix containing the eigenvalues.
         */
        public static DMatrixRMaj createMatrixD(EigenDecomposition_F64 <DMatrixRMaj> eig)
        {
            int N = eig.getNumberOfEigenvalues();

            DMatrixRMaj D = new DMatrixRMaj(N, N);

            for (int i = 0; i < N; i++)
            {
                Complex_F64 c = eig.getEigenvalue(i);

                if (c.isReal())
                {
                    D.set(i, i, c.real);
                }
            }

            return(D);
        }
Exemple #5
0
 public Complex_F64 getEigenvalue(int index)
 {
     return(symmetric ? symmetricAlg.getEigenvalue(index) :
            generalAlg.getEigenvalue(index));
 }