public static Vector<Complex> GenerateRandomDenseVector(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Random.MersenneTwister(1) }; var v = new DenseVector(order); for (var i = 0; i < order; i++) { v[i] = new Complex(normal.Sample(), normal.Sample()); } // Generate a matrix which is positive definite. return v; }
public static Vector <Complex> GenerateRandomUserDefinedVector(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Numerics.Random.MersenneTwister(1) }; var v = new UserDefinedVector(order); for (var i = 0; i < order; i++) { v[i] = new Complex(normal.Sample(), normal.Sample()); } // Generate a matrix which is positive definite. return(v); }
public static Matrix<Complex> GenerateRandomDenseMatrix(int row, int col) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Random.MersenneTwister(1) }; var matrixA = new DenseMatrix(row, col); for (var i = 0; i < row; i++) { for (var j = 0; j < col; j++) { matrixA[i, j] = new Complex(normal.Sample(), normal.Sample()); } } // Generate a matrix which is positive definite. return matrixA; }
public static Matrix <Complex> GenerateRandomDenseMatrix(int row, int col) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Numerics.Random.MersenneTwister(1) }; var matrixA = new DenseMatrix(row, col); for (var i = 0; i < row; i++) { for (var j = 0; j < col; j++) { matrixA[i, j] = new Complex(normal.Sample(), normal.Sample()); } } // Generate a matrix which is positive definite. return(matrixA); }
public static Matrix <Complex> GenerateRandomPositiveDefiniteHermitianUserDefinedMatrix(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Numerics.Random.MersenneTwister(1) }; var matrixA = new UserDefinedMatrix(order); for (var i = 0; i < order; i++) { for (var j = 0; j < order; j++) { matrixA[i, j] = new Complex(normal.Sample(), normal.Sample()); } } // Generate a Hermitian matrix which is positive definite. return(matrixA.ConjugateTranspose() * matrixA); }
public static Vector <float> GenerateRandomDenseVector(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Numerics.Random.MersenneTwister(1); var v = new DenseVector(order); for (int i = 0; i < order; i++) { v[i] = (float)normal.Sample(); } // Generate a matrix which is positive definite. return(v); }
public static Matrix GenerateRandomDenseMatrix(int row, int col) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Random.MersenneTwister(1); var A = new DenseMatrix(row, col); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { A[i, j] = normal.Sample(); } } // Generate a matrix which is positive definite. return A; }
public static Matrix GenerateRandomPositiveDefiniteMatrix(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Random.MersenneTwister(1); var A = new DenseMatrix(order); for (int i = 0; i < order; i++) { for (int j = 0; j < order; j++) { A[i, j] = normal.Sample(); } } // Generate a matrix which is positive definite. return A.Transpose() * A; }
public static Matrix <float> GenerateRandomPositiveDefiniteUserDefinedMatrix(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Numerics.Random.MersenneTwister(1); var matrixA = new UserDefinedMatrix(order); for (int i = 0; i < order; i++) { for (int j = 0; j < order; j++) { matrixA[i, j] = (float)normal.Sample(); } } // Generate a matrix which is positive definite. return(matrixA.Transpose() * matrixA); }
public static Matrix <double> GenerateRandomUserDefinedMatrix(int row, int col) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Numerics.Random.MersenneTwister(1); var matrixA = new UserDefinedMatrix(row, col); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { matrixA[i, j] = normal.Sample(); } } // Generate a matrix which is positive definite. return(matrixA); }
public static Vector GenerateRandomUserDefinedVector(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal(); normal.RandomSource = new Random.MersenneTwister(1); var v = new UserDefinedVector(order); for (int i = 0; i < order; i++) { v[i] = normal.Sample(); } // Generate a matrix which is positive definite. return v; }
public static Matrix<Complex> GenerateRandomPositiveDefiniteHermitianDenseMatrix(int order) { // Fill a matrix with standard random numbers. var normal = new Distributions.Normal { RandomSource = new Random.MersenneTwister(1) }; var matrixA = new DenseMatrix(order); for (var i = 0; i < order; i++) { for (var j = 0; j < order; j++) { matrixA[i, j] = new Complex(normal.Sample(), normal.Sample()); } } // Generate a Hermitian matrix which is positive definite. return matrixA.ConjugateTranspose() * matrixA; }