void Clustering()
        {
            pca = new PrincipalComponentAnalysis();
            //pca
            pca.Learn(inputImgArray.ToArray());
            var pcaRes = pca.Transform(inputImgArray.ToArray());


            dn  = new DistanceNetwork(pcaRes[0].Length, mainForm.closestSquareNumber(totalData));
            som = new SOMLearning(dn);
            Console.WriteLine("Learning");

            for (var i = 0; i < maxEpoch; i++)
            {
                var error = som.RunEpoch(pcaRes);
                if (error < errorGoal)
                {
                    break;
                }
                if (i % 10 == 0)
                {
                    Console.WriteLine($"Report Cluster error {i} : {error}");
                }
            }
            dn.Save(savedDNNetwork);
        }
Exemple #2
0
        static void GenerateReport(Maze maze, List <Triplet> triplets, DistanceNetwork network)
        {
            foreach (Triplet t in triplets)
            {
                double[] x0     = OneHot(t.x0, maze.StatesCount, 1.0);
                double[] g      = OneHot(t.g, maze.StatesCount, 1.0);
                double[] x1     = new double[maze.StatesCount]; //empty
                double[] input  = x0.Concat(g).ToArray().Concat(x1).ToArray();
                double[] output = network.Compute(input);

                int maxIndex = maze.StatesCount * 2;
                for (int i = 0; i < maze.StatesCount; i++)
                {
                    if (output[maze.StatesCount * 2 + i] > output[maxIndex])
                    {
                        maxIndex = maze.StatesCount * 2 + i;
                    }
                }
                if (maxIndex != t.x1)
                {
                    Console.WriteLine("Post training error on " + t.ToString());
                    Console.WriteLine("Predicted " + maxIndex + "(" + output[maxIndex].ToString("N2") + ")");
                }
            }
        }
Exemple #3
0
        void SearchSolution()
        {
            // create network
            DistanceNetwork network = new DistanceNetwork(2, neurons);

            // set random generators range
            foreach (var neuron in network.Layers.SelectMany(layer => layer?.Neurons).Where(neuron => neuron != null))
            {
                neuron.RandGenerator = new UniformContinuousDistribution(new Range(0, 1000));
            }


            // create learning algorithm
            ElasticNetworkLearning trainer = new ElasticNetworkLearning(network);

            double fixedLearningRate    = learningRate / 20;
            double driftingLearningRate = fixedLearningRate * 19;

            double[,] path = new double[neurons + 1, 2];
            double[] input = new double[2];
            int      i     = 0;

            while (!needToStop)
            {
                // update learning speed & radius
                trainer.LearningRate   = driftingLearningRate * (iterations - i) / iterations + fixedLearningRate;
                trainer.LearningRadius = learningRadius * (iterations - i) / iterations;

                // set network input
                int currentCity = rand.Next(citiesCount);
                input[0] = map[currentCity, 0];
                input[1] = map[currentCity, 1];

                // run one training iteration
                trainer.Run(input);

                // show current path
                for (int j = 0; j < neurons; j++)
                {
                    path[j, 0] = network.Layers[0].Neurons[j].Weights[0];
                    path[j, 1] = network.Layers[0].Neurons[j].Weights[1];
                }
                path[neurons, 0] = network.Layers[0].Neurons[0].Weights[0];
                path[neurons, 1] = network.Layers[0].Neurons[0].Weights[1];

                chart.UpdateDataSeries("path", path);

                i++;

                SetText(currentIterationBox, i.ToString());

                if (i >= iterations)
                {
                    break;
                }
            }

            // enable settings controls
            EnableControls(true);
        }
Exemple #4
0
        public void somTraining()
        {
            double[][] input_data = new double[Data.instance.images.Count][];
            for (int i = 0; i < images.Count; i++)
            {
                Bitmap image = new Bitmap(images[i]);
                image = preProcess(image);
                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data[i]);
            }

            pca = new PrincipalComponentAnalysis(PrincipalComponentMethod.Center);

            pca.Learn(input_data);
            double[][] input_pca = pca.Transform(input_data);
            //o Clusters(Groups) Count: 4

            som_network  = new DistanceNetwork(input_pca[0].Count(), 4);
            som_learning = new SOMLearning(som_network);
            //o Error Goals: 0.001
            //o Max Epochs: 100000
            int    maxIter  = 100000;
            double maxError = 0.001;

            for (int i = 0; i < maxIter; i++)
            {
                double error = som_learning.RunEpoch(input_pca);
                if (error < maxError)
                {
                    break;
                }
            }

            System.Windows.Forms.MessageBox.Show("SOM Training Complete");
        }
Exemple #5
0
        static DistanceNetwork CreateSOM(string tagname)
        {
            int samples = 2 * 31 * 24;
            int retro   = 3;
            var context = new TagDbContext();
            var data    = context.TagValues
                          .Where(t => t.Tag.TagName == tagname)
                          .OrderByDescending(v => v.DateTime)
                          .Select(v => new double[] { (double)v.DateTime.Hour, (double)v.DateTime.DayOfWeek, v.Value })
                          .Take(samples + retrospective + 3)
                          .AsEnumerable()
                          .Reverse()
                          .ToArray();

            double[][] trainingSet = new double[data.Length][];

            for (int index = 0; index < samples; index++)
            {
                trainingSet[index] = new double[] { data[index + 3][0], data[index + 3][1], data[index + 3][2],
                                                    data[index + 2][2], data[index + 1][2], data[index][2] };
            }

            var networkSize    = 15;
            var iterations     = 500;
            var learningRate   = 0.3;
            var learningRadius = 3;

            Neuron.RandRange = new Range(0, 255);
            // create network
            DistanceNetwork network = new DistanceNetwork(2, networkSize * networkSize);

            // create learning algorithm
            SOMLearning trainer = new SOMLearning(network, networkSize, networkSize);
            // create map
            //map = new int[networkSize, networkSize, 3];

            double fixedLearningRate    = learningRate / 10;
            double driftingLearningRate = fixedLearningRate * 9;

            // iterations
            int i = 0;

            // loop
            while (true)
            {
                trainer.LearningRate   = driftingLearningRate * (iterations - i) / iterations + fixedLearningRate;
                trainer.LearningRadius = (double)learningRadius * (iterations - i) / iterations;
                // run training epoch
                trainer.RunEpoch(trainingSet);
                // increase current iteration
                i++;
                // stop ?
                if (i >= iterations)
                {
                    break;
                }
            }
            return(network);
        }
Exemple #6
0
        public void DistanceNetworkTest1()
        {
            string basePath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "dn");

            #region doc_example
            // Assure results are reproducible
            Accord.Math.Tools.SetupGenerator(0);

            int numberOfInputs = 3;
            int hiddenNeurons  = 25;

            // Create some example inputs
            double[][] input =
            {
                new double[] { -1, -1, -1 },
                new double[] { -1,  1, -1 },
                new double[] {  1, -1, -1 },
                new double[] {  1,  1, -1 },
                new double[] { -1, -1,  1 },
                new double[] { -1,  1,  1 },
                new double[] {  1, -1,  1 },
                new double[] {  1,  1,  1 },
            };

            // Create a new network
            var network = new DistanceNetwork(numberOfInputs, hiddenNeurons);

            // Create a teaching algorithm
            var teacher = new SOMLearning(network);

            // Use the teacher to learn the network
            double error = Double.PositiveInfinity;
            for (int i = 0; i < 10; i++)
            {
                error = teacher.RunEpoch(input);
            }

            string fileName = Path.Combine(basePath, "ann.bin");

            // Save the network to a file path:
            Serializer.Save(network, fileName);

            // Load the network back from the stream
            DistanceNetwork target = Serializer.Load <DistanceNetwork>(fileName);
            #endregion

            // Make sure the network we loaded is exactly the same
            Assert.AreEqual(network.InputsCount, target.InputsCount);
            for (int i = 0; i < network.Layers.Length; i++)
            {
                Assert.AreEqual(network.Layers[i].InputsCount, target.Layers[i].InputsCount);
                for (int j = 0; j < network.Layers[i].Neurons.Length; j++)
                {
                    Assert.AreEqual(network.Layers[i].Neurons[j].InputsCount, target.Layers[i].Neurons[j].InputsCount);
                    Assert.AreEqual(network.Layers[i].Neurons[j].Weights, target.Layers[i].Neurons[j].Weights);
                }
            }
        }
Exemple #7
0
 /// <summary>
 /// Deserialization Constructor
 /// </summary>
 /// <param name="info"></param>
 /// <param name="ctxt"></param>
 public ElasticNetworkLearning(SerializationInfo info, StreamingContext ctxt)
 {
     //Get the values from info and assign them to the appropriate properties
     network        = (DistanceNetwork)info.GetValue("network", typeof(DistanceNetwork));
     distance       = (double[])info.GetValue("distance", typeof(double[]));
     learningRate   = (double)info.GetValue("learningRate", typeof(double));
     learningRadius = (double)info.GetValue("learningRadius", typeof(double));
     squaredRadius2 = (double)info.GetValue("squaredRadius2", typeof(double));
 }
Exemple #8
0
 /// <summary>
 /// Deserialization Constructor
 /// </summary>
 /// <param name="info"></param>
 /// <param name="ctxt"></param>
 public SOMLearning(SerializationInfo info, StreamingContext ctxt)
 {
     //Get the values from info and assign them to the appropriate properties
     network        = (DistanceNetwork)info.GetValue("network", typeof(DistanceNetwork));
     width          = (int)info.GetValue("width", typeof(int));
     height         = (int)info.GetValue("height", typeof(int));
     learningRate   = (double)info.GetValue("learningRate", typeof(double));
     learningRadius = (double)info.GetValue("learningRadius", typeof(double));
     squaredRadius2 = (double)info.GetValue("squaredRadius2", typeof(double));
 }
Exemple #9
0
        // Worker thread
        void SearchSolution()
        {
            // create network
            DistanceNetwork network = new DistanceNetwork(2, networkSize * networkSize);

            // set random generators range
            foreach (var layer in network.Layers)
            {
                foreach (var neuron in layer.Neurons)
                {
                    neuron.RandGenerator = new UniformContinuousDistribution(
                        new Range(0, Math.Max(pointsPanel.ClientRectangle.Width, pointsPanel.ClientRectangle.Height)));
                }
            }

            // create learning algorithm
            SOMLearning trainer = new SOMLearning(network, networkSize, networkSize);

            // create map
            map = new int[networkSize, networkSize, 3];

            double fixedLearningRate    = learningRate / 10;
            double driftingLearningRate = fixedLearningRate * 9;

            // iterations
            int i = 0;

            // loop
            while (!needToStop)
            {
                trainer.LearningRate   = driftingLearningRate * (iterations - i) / iterations + fixedLearningRate;
                trainer.LearningRadius = (double)learningRadius * (iterations - i) / iterations;

                // run training epoch
                trainer.RunEpoch(trainingSet);

                // update map
                UpdateMap(network);

                // increase current iteration
                i++;

                // set current iteration's info
                SetText(currentIterationBox, i.ToString());

                // stop ?
                if (i >= iterations)
                {
                    break;
                }
            }

            // enable settings controls
            EnableControls(true);
        }
Exemple #10
0
        public Form()
        {
            InitializeComponent();
            rbCheck();
            chartType();
            Accord.Math.Random.Generator.Seed = 0;
            for (int i = 0; i < 101; i++)
            {
                Graph[i]    = new Boolean[101];
                Clusters[i] = new int[101];
                for (int j = 0; j < 100; j++)
                {
                    Graph[i][j]    = false;
                    Clusters[i][j] = 0;
                }
            }

            #region Инициализация персептрона

            /*
             * netAtt = new ActivationNetwork(new SigmoidFunction(0.2), Configuration[0], Configuration.Skip(1).ToArray());
             * netAtt.ForEachWeight(z => rnd.NextDouble());
             * teachAtt = new BackPropagationLearning(netAtt);
             * teachAtt.LearningRate = 1;
             *
             * netMed = new ActivationNetwork(new SigmoidFunction(0.2), Configuration[0], Configuration.Skip(1).ToArray());
             * netMed.ForEachWeight(z => rnd.NextDouble());
             * teachMed = new BackPropagationLearning(netMed);
             * teachMed.LearningRate = 1;
             *
             * network = new ActivationNetwork(new SigmoidFunction(6), Configuration[0], Configuration.Skip(1).ToArray());
             * network.ForEachWeight(z => rnd.NextDouble()*2-1);
             * teacher = new BackPropagationLearning(network);
             * teacher.LearningRate = 1;
             */
            #endregion

            network = new DistanceNetwork(2, NetworkWidth * NetworkHeight);
            for (int x = 0; x < NetworkWidth; x++)
            {
                for (int y = 0; y < NetworkHeight; y++)
                {
                    var n = network.Layers[0].Neurons[x * NetworkHeight + y];
                    n.Weights[0] = Rnd.NextDouble() * 0.2 + 0.4;
                    n.Weights[1] = Rnd.NextDouble() * 0.2 + 0.4;
                }
            }
            learning = new SOMLearning(network, NetworkWidth, NetworkHeight);
            learning.LearningRadius = LearningRadius;
            learning.LearningRate   = LearningRate;

            Timer          = new System.Windows.Forms.Timer();
            Timer.Tick    += (sender, args) => { Learning(); this.Invalidate(true); };
            Timer.Interval = 1000;
        }
Exemple #11
0
        /// <summary>
        /// Initializes a new instance of the <see cref="SOMLearning"/> class
        /// </summary>
        /// 
        /// <param name="network">Neural network to train</param>
        /// <param name="width">Neural network's width</param>
        /// <param name="height">Neural network's height</param>
        ///
        /// <remarks>The constructor allows to pass network of arbitrary rectangular shape.
        /// The amount of neurons in the network should be equal to <b>width</b> * <b>height</b>.
        /// </remarks> 
        ///
        public SOMLearning(DistanceNetwork network, int width, int height)
        {
            // check network size
            if (network[0].NeuronsCount != width * height)
            {
                throw new ArgumentException("Invalid network size");
            }

            this.network = network;
            this.width = width;
            this.height = height;
        }
Exemple #12
0
 public Form1()
 {
     InitializeComponent();
     if (File.Exists("BPNNBrain.net"))
     {
         an = (ActivationNetwork)ActivationNetwork.Load("BPNNBrain.net");
     }
     else if (File.Exists("SOMBrain.net"))
     {
         dn = (DistanceNetwork)DistanceNetwork.Load("SOMBrain.ann");
     }
 }
Exemple #13
0
        /// <summary>
        /// Initializes a new instance of the <see cref="SOMLearning"/> class.
        /// </summary>
        ///
        /// <param name="network">Neural network to train.</param>
        /// <param name="width">Neural network's width.</param>
        /// <param name="height">Neural network's height.</param>
        ///
        /// <remarks>The constructor allows to pass network of arbitrary rectangular shape.
        /// The amount of neurons in the network should be equal to <b>width</b> * <b>height</b>.
        /// </remarks>
        ///
        /// <exception cref="ArgumentException">Invalid network size - network size does not correspond
        /// to specified width and height.</exception>
        ///
        public SOMLearning(DistanceNetwork network, int width, int height)
        {
            // check network size
            if (network.Layers[0].Neurons.Length != width * height)
            {
                throw new ArgumentException("Invalid network size.");
            }

            this.network = network;
            this.width   = width;
            this.height  = height;
        }
Exemple #14
0
        private void btnTraining_Click(object sender, EventArgs e)
        {
            double[][] input_data  = new double[Data.getInstance().images.Count][];
            double[][] output_data = new double[Data.getInstance().images.Count][];

            int max = Data.getInstance().classes.Count - 1;
            int min = 0;

            for (int i = 0; i < Data.getInstance().images.Count; i++)
            {
                Bitmap image = Data.getInstance().preprocessing(Data.getInstance().images[i]);

                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data[i]);

                output_data[i]    = new double[1];
                output_data[i][0] = Data.getInstance().class_indexes[i];
                output_data[i][0] = 0 + (output_data[i][0] - min) * (1 - 0) / (max - min);
            }

            pca        = new PrincipalComponentAnalysis();
            pca.Method = PrincipalComponentMethod.Center;
            pca.Learn(input_data);
            double[][] input_from_pca = pca.Transform(input_data);

            int a            = 0;
            int output_count = 0;

            while (a < Data.getInstance().classes.Count)
            {
                output_count = a * a;
                a++;
            }

            som_network  = new DistanceNetwork(input_from_pca[0].Count(), output_count);
            som_learning = new SOMLearning(som_network);

            int    max_iteration = 10000;
            double max_error     = 0.0001;

            for (int i = 0; i < max_iteration; i++)
            {
                double error = som_learning.RunEpoch(input_from_pca);
                if (error < max_error)
                {
                    break;
                }
            }

            btnBrowseClustering.Enabled = true;
            btnTraining.Enabled         = false;
        }
Exemple #15
0
        //initialize
        public findForm(DistanceNetwork dn)
        {
            InitializeComponent();
            this.dn = dn;
            listView1.LargeImageList = imgList;

            //Predicting Method
            som = new SOMLearning(this.dn);
            init();
            getTrainedDataArray();
            getClassMap();
            classMapChecker();
        }
Exemple #16
0
        private NeuralEngine()
        {
            _allData      = GetTrainingData();
            _imageToArray = new ImageToArray(0, 1);

            _classificationNetwork = File.Exists("BPNNBrain.net")
                ? Network.Load("BPNNBrain.net") as ActivationNetwork
                : new ActivationNetwork(new SigmoidFunction(), 100, 10, 1);

            _clusteringNetwork = File.Exists("SOMBrain.net")
                ? Network.Load("SOMBrain.net") as DistanceNetwork
                : CreateNewDistanceNetwork();
        }
Exemple #17
0
        /// <summary>
        /// Initializes a new instance of the <see cref="SOMLearning"/> class
        /// </summary>
        /// 
        /// <param name="network">Neural network to train</param>
        /// 
        /// <remarks>This constructor supposes that a square network will be passed for training -
        /// it should be possible to get square root of network's neurons amount.</remarks>
        /// 
        public SOMLearning(DistanceNetwork network)
        {
            // network's dimension was not specified, let's try to guess
            int neuronsCount = network[0].NeuronsCount;
            width = (int)Math.Sqrt(neuronsCount);

            if (width * width != neuronsCount)
            {
                throw new ArgumentException("Invalid network size");
            }

            // ok, we got it
            this.network = network;
        }
Exemple #18
0
        // Constructor
        public MainForm()
        {
            InitializeComponent();

            // Create network
            network = new DistanceNetwork(3, 100 * 100);

            // Create map bitmap
            mapBitmap = new Bitmap(200, 200, PixelFormat.Format24bppRgb);

            //
            RandomizeNetwork();
            UpdateSettings();
        }
Exemple #19
0
        public override void addModality(Signal s, string label = null)
        {
            base.addModality(s, label);

            //Each time we add a modality the structure of the network changes
            int inputCount = 0;

            foreach (Signal mod in modalities)
            {
                inputCount += mod.Width * mod.Height;
            }

            network = new DistanceNetwork(inputCount, output.Width * output.Height);
            teacher = new SOMLearning(network, output.Width, output.Height);
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="SOMLearning"/> class
        /// </summary>
        ///
        /// <param name="network">Neural network to train</param>
        ///
        /// <remarks>This constructor supposes that a square network will be passed for training -
        /// it should be possible to get square root of network's neurons amount.</remarks>
        ///
        public SOMLearning(DistanceNetwork network)
        {
            // network's dimension was not specified, let's try to guess
            int neuronsCount = network[0].NeuronsCount;

            width = (int)Math.Sqrt(neuronsCount);

            if (width * width != neuronsCount)
            {
                throw new ArgumentException("Invalid network size");
            }

            // ok, we got it
            this.network = network;
        }
Exemple #21
0
        // Worker thread
        void SearchSolution( )
        {
            // set random generators range
            Neuron.RandRange = new DoubleRange(0, Math.Max(this.pointsPanel.ClientRectangle.Width, this.pointsPanel.ClientRectangle.Height));

            // create network
            var network = new DistanceNetwork(2, this.networkSize * this.networkSize);

            // create learning algorithm
            var trainer = new SOMLearning(network, this.networkSize, this.networkSize);

            // create map
            this.map = new int[this.networkSize, this.networkSize, 3];

            var fixedLearningRate    = this.learningRate / 10;
            var driftingLearningRate = fixedLearningRate * 9;

            // iterations
            var i = 0;

            // loop
            while (!this.needToStop)
            {
                trainer.LearningRate   = driftingLearningRate * (this.iterations - i) / this.iterations + fixedLearningRate;
                trainer.LearningRadius = (double)this.learningRadius * (this.iterations - i) / this.iterations;

                // run training epoch
                trainer.RunEpoch(this.trainingSet);

                // update map
                UpdateMap(network);

                // increase current iteration
                i++;

                // set current iteration's info
                this.currentIterationBox.Text = i.ToString( );

                // stop ?
                if (i >= this.iterations)
                {
                    break;
                }
            }

            // enable settings controls
            EnableControls(true);
        }
Exemple #22
0
        static void ReportPath(Maze maze, DistanceNetwork network, int start, int end)
        {
            Console.WriteLine("From " + start + " to " + end);

            List <int> path      = new List <int>();
            int        rd        = 0;
            bool       pathFound = FindPath(maze, network, start, end, ref path, ref rd);

            string pathStr = "Computed path = ";

            foreach (int step in path)
            {
                pathStr += step + " --> ";
            }
            Console.WriteLine(pathStr);
        }
Exemple #23
0
 //Going to Find Form
 private void btnFind_Click(object sender, EventArgs e)
 {
     //validate existence of files
     if (System.IO.File.Exists(savedDNNetwork))
     {
         //Load Networks
         dn = (DistanceNetwork)DistanceNetwork.Load(savedDNNetwork);
         //Go to Form
         var form = new findForm(dn);
         form.ShowDialog();
     }
     else
     {
         MessageBox.Show($"{savedDNNetwork} not Found");
     }
 }
Exemple #24
0
        /// <summary>
        /// Initializes a new instance of the <see cref="SOMLearning"/> class.
        /// </summary>
        ///
        /// <param name="network">Neural network to train.</param>
        ///
        /// <remarks><para>This constructor supposes that a square network will be passed for training -
        /// it should be possible to get square root of network's neurons amount.</para></remarks>
        ///
        /// <exception cref="ArgumentException">Invalid network size - square network is expected.</exception>
        ///
        public SOMLearning(DistanceNetwork network)
        {
            // network's dimension was not specified, let's try to guess
            var neuronsCount = network.Layers[0].Neurons.Length;
            var width        = (int)System.Math.Sqrt(neuronsCount);

            if (width * width != neuronsCount)
            {
                throw new ArgumentException("Invalid network size.");
            }

            // ok, we got it
            this.network = network;
            this.width   = width;
            this.height  = width;
        }
Exemple #25
0
        // Constructor
        public MainForm( )
        {
            //
            // Required for Windows Form Designer support
            //
            InitializeComponent( );

            // Create network
            network = new DistanceNetwork(3, 100 * 100);

            // Create map bitmap
            mapBitmap = new Bitmap(200, 200, PixelFormat.Format24bppRgb);

            //
            RandomizeNetwork( );
            UpdateSettings( );
        }
Exemple #26
0
        /// <summary>
        ///     Trains Network for Clustering (Distance Network, Self Organizing Map)
        /// </summary>
        /// <param name="epoch">Number of epoch</param>
        /// <returns>Neural network Error</returns>
        // TODO: Build the correct clustering network
        public double TrainClusteringNetwork(int epoch = 10000)
        {
            _clusteringNetwork = CreateNewDistanceNetwork();
            var pcaResult = ComputePca(RemoveFromCategory(_allData.Values.ToList()));
            var trainer   = new SOMLearning(_clusteringNetwork);
            var error     = 0d;

            for (var i = 0; i < epoch; i++)
            {
                error = trainer.RunEpoch(pcaResult);
                if (error < 0.0001)
                {
                    break;
                }
            }

            return(error);
        }
Exemple #27
0
        private void SetHopfieldNetworkClick(object sender, EventArgs e)
        {
            int cities, neurons;

            if ((int.TryParse(txtbxCities.Text, out cities) && int.TryParse(txtbxNeurons.Text, out neurons)) &&
                (cities > 0) && (neurons > 0))
            {
                this.dstNet  = new DistanceNetwork(cities, neurons);
                citiesMap    = new double[1][];
                citiesMap[0] = new double[cities];
                Random r = new Random();
                for (int i = 0; i < cities; i++)
                {
                    citiesMap[0][i] = r.NextDouble();
                }
            }
            else
            {
                MessageBox.Show("Wrong input !");
            }
        }
        public MainForm()
        {
            InitializeComponent();

            picturesPath = Application.StartupPath + @"\pictures";

            listAllImages = new List <String>();

            // Check BPNNBrain.net file
            if (File.Exists("BPNNBrain.net"))
            {
                // Load BPNNBrain.net file
                Network.loadActivationNetwork = (ActivationNetwork)ActivationNetwork.Load("BPNNBrain.net");
            }

            // Check SOMBrain.net file
            if (File.Exists("SOMBrain.net"))
            {
                // Load SOMBrain.net file
                Network.loadDistanceNetwork = (DistanceNetwork)DistanceNetwork.Load("SOMBrain.net");
            }

            // Check pictures directory
            if (Directory.Exists(picturesPath))
            {
                // Load All Images
                listAllImages = LoadImages();

                // It means that user added some art
                if (Network.checkAddArt)
                {
                    checkListAllImages = true;
                }
                else
                {
                    checkListAllImages = false;
                }
            }
        }
Exemple #29
0
        /// <summary>
        /// Initializes a new instance of the <see cref="ElasticNetworkLearning"/> class.
        /// </summary>
        ///
        /// <param name="network">Neural network to train.</param>
        ///
        public ElasticNetworkLearning(DistanceNetwork network)
        {
            this.network = network;

            // precalculate distances array
            int    neurons    = network.Layers[0].Neurons.Length;
            double deltaAlpha = Math.PI * 2.0 / neurons;
            double alpha      = deltaAlpha;

            distance    = new double[neurons];
            distance[0] = 0.0;

            // calculate all distance values
            for (int i = 1; i < neurons; i++)
            {
                double dx = 0.5 * Math.Cos(alpha) - 0.5;
                double dy = 0.5 * Math.Sin(alpha);

                distance[i] = dx * dx + dy * dy;

                alpha += deltaAlpha;
            }
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="ElasticNetworkLearning"/> class
        /// </summary>
        /// 
        /// <param name="network">Neural network to train</param>
        /// 
        public ElasticNetworkLearning( DistanceNetwork network )
        {
            this.network = network;

            // precalculate distances array
            int		neurons = network[0].NeuronsCount;
            double	deltaAlpha = Math.PI * 2.0 / neurons;
            double	alpha = deltaAlpha;

            distance = new double[neurons];
            distance[0] = 0.0;

            // calculate all distance values
            for ( int i = 1; i < neurons; i++ )
            {
                double dx = 0.5 * Math.Cos( alpha ) - 0.5;
                double dy = 0.5 * Math.Sin( alpha );

                distance[i] = dx * dx + dy * dy;

                alpha += deltaAlpha;
            }
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="ElasticNetworkLearning"/> class
        /// </summary>
        ///
        /// <param name="network">Neural network to train</param>
        ///
        public ElasticNetworkLearning(DistanceNetwork network)
        {
            this.network = network;

            // precalculate distances array
            var neurons    = network[0].NeuronsCount;
            var deltaAlpha = Math.PI * 2.0 / neurons;
            var alpha      = deltaAlpha;

            this.distance    = new double[neurons];
            this.distance[0] = 0.0;

            // calculate all distance values
            for (var i = 1; i < neurons; i++)
            {
                var dx = 0.5 * Math.Cos(alpha) - 0.5;
                var dy = 0.5 * Math.Sin(alpha);

                this.distance[i] = dx * dx + dy * dy;

                alpha += deltaAlpha;
            }
        }
Exemple #32
0
        // Update map
        private void UpdateMap(DistanceNetwork network)
        {
            // get first layer
            Layer layer = network[0];

            // lock
            Monitor.Enter(this);

            // run through all neurons
            for (int i = 0, n = layer.NeuronsCount; i < n; i++)
            {
                var neuron = layer[i];

                var x = i % this.networkSize;
                var y = i / this.networkSize;

                this.map[y, x, 0] = (int)neuron[0];
                this.map[y, x, 1] = (int)neuron[1];
                this.map[y, x, 2] = 0;
            }

            // collect active neurons
            for (var i = 0; i < pointsCount; i++)
            {
                network.Compute(this.trainingSet[i]);
                var w = network.GetWinner( );

                this.map[w / this.networkSize, w % this.networkSize, 2] = 1;
            }

            // unlock
            Monitor.Exit(this);

            //
            this.mapPanel.Invalidate( );
        }
Exemple #33
0
        // Update map
        private void UpdateMap(DistanceNetwork network)
        {
            // get first layer
            Layer layer = network.Layers[0];

            // lock
            Monitor.Enter(this);

            // run through all neurons
            for (int i = 0; i < layer.Neurons.Length; i++)
            {
                Neuron neuron = layer.Neurons[i];

                int x = i % networkSize;
                int y = i / networkSize;

                map[y, x, 0] = (int)neuron.Weights[0];
                map[y, x, 1] = (int)neuron.Weights[1];
                map[y, x, 2] = 0;
            }

            // collect active neurons
            for (int i = 0; i < pointsCount; i++)
            {
                network.Compute(trainingSet[i]);
                int w = network.GetWinner();

                map[w / networkSize, w % networkSize, 2] = 1;
            }

            // unlock
            Monitor.Exit(this);

            //
            mapPanel.Invalidate();
        }