Exemple #1
0
        void UpdateForSolve()
        {
            if (need_solve_update == false)
            {
                return;
            }

            // construct constraints matrix and RHS
            WeightsM.Clear();
            Array.Clear(Cx, 0, N);
            Array.Clear(Cy, 0, N);
            Array.Clear(Cz, 0, N);
            foreach (var constraint in SoftConstraints)
            {
                int    vid = constraint.Key;
                int    i   = ToIndex[vid];
                double w   = constraint.Value.Weight;

                if (UseSoftConstraintNormalEquations)
                {
                    w = w * w;
                }

                WeightsM.Set(i, i, w);
                Vector3D pos = constraint.Value.Position;
                Cx[i] = w * pos.x;
                Cy[i] = w * pos.y;
                Cz[i] = w * pos.z;
            }

            // add RHS vectors
            for (int i = 0; i < N; ++i)
            {
                Bx[i] = MLx[i] + Cx[i];
                By[i] = MLy[i] + Cy[i];
                Bz[i] = MLz[i] + Cz[i];
            }

            // update basic preconditioner
            // [RMS] currently not using this...it actually seems to make things
            //   worse!!
            for (int i = 0; i < N; i++)
            {
                //double diag_value = M[i, i] + WeightsM[i, i];
                double diag_value = M[i, i];
                //Preconditioner.Set(i, i, 1.0 / diag_value);
                Preconditioner.Set(i, i, diag_value);
            }

            need_solve_update = false;
        }
        // [RMS] this only tests some basic cases...
        public static void test_Laplacian()
        {
            // compact version
            DMesh3 mesh = new DMesh3(TestUtil.MakeRemeshedCappedCylinder(1.0), true);

            Debug.Assert(mesh.IsCompact);

            AxisAlignedBox3d bounds = mesh.GetBounds();

            TestUtil.WriteDebugMesh(mesh, "___CG_before.obj");

            List <IMesh> result_meshes = new List <IMesh>();

            // make uniform laplacian matrix
            int N = mesh.VertexCount;
            SymmetricSparseMatrix M = new SymmetricSparseMatrix();

            //DenseMatrix M = new DenseMatrix(N, N);
            double[] Px = new double[N], Py = new double[N], Pz = new double[N];

            int[] nbr_counts = new int[N];
            for (int vid = 0; vid < N; ++vid)
            {
                nbr_counts[vid] = mesh.GetVtxEdgeCount(vid);
            }

            int        ti          = MeshQueries.FindNearestTriangle_LinearSearch(mesh, new Vector3d(2, 5, 2));
            int        v_pin       = mesh.GetTriangle(ti).a;
            List <int> constraints = new List <int>()
            {
                v_pin
            };
            double consW      = 10;
            double consBottom = 10;

            foreach (int vid in constraints)
            {
                result_meshes.Add(TestUtil.MakeMarker(mesh.GetVertex(vid), (vid == 0) ? 0.2f : 0.1f, Colorf.Red));
            }

            for (int vid = 0; vid < N; ++vid)
            {
                int      n = nbr_counts[vid];
                Vector3d v = mesh.GetVertex(vid), c = Vector3d.Zero;

                Px[vid] = v.x; Py[vid] = v.y; Pz[vid] = v.z;

                bool bottom = (v.y - bounds.Min.y) < 0.01f;

                double sum_w = 0;
                foreach (int nbrvid in mesh.VtxVerticesItr(vid))
                {
                    int n2 = nbr_counts[nbrvid];

                    // weight options
                    //double w = -1;
                    double w = -1.0 / Math.Sqrt(n + n2);
                    //double w = -1.0 / n;

                    M.Set(vid, nbrvid, w);

                    c     += w * mesh.GetVertex(nbrvid);
                    sum_w += w;
                }
                sum_w = -sum_w;

                M.Set(vid, vid, sum_w);

                // add soft constraints
                if (constraints.Contains(vid))
                {
                    M.Set(vid, vid, sum_w + consW);
                }
                else if (bottom)
                {
                    M.Set(vid, vid, sum_w + consBottom);
                }
            }

            // compute laplacians
            double[] MLx = new double[N], MLy = new double[N], MLz = new double[N];
            M.Multiply(Px, MLx);
            M.Multiply(Py, MLy);
            M.Multiply(Pz, MLz);


            DiagonalMatrix Preconditioner = new DiagonalMatrix(N);

            for (int i = 0; i < N; i++)
            {
                Preconditioner.Set(i, i, 1.0 / M[i, i]);
            }


            MLy[v_pin] += consW * 0.5f;
            MLx[v_pin] += consW * 0.5f;
            MLz[v_pin] += consW * 0.5f;

            bool useXAsGuess = true;
            // preconditioned
            SparseSymmetricCG SolverX = new SparseSymmetricCG()
            {
                B = MLx, X = Px, MultiplyF = M.Multiply, PreconditionMultiplyF = Preconditioner.Multiply, UseXAsInitialGuess = useXAsGuess
            };
            // initial solution
            SparseSymmetricCG SolverY = new SparseSymmetricCG()
            {
                B = MLy, X = Py, MultiplyF = M.Multiply, UseXAsInitialGuess = useXAsGuess
            };
            // neither of those
            SparseSymmetricCG SolverZ = new SparseSymmetricCG()
            {
                B = MLz, MultiplyF = M.Multiply
            };

            bool bx = SolverX.Solve();
            bool by = SolverY.Solve();
            bool bz = SolverZ.Solve();

            for (int vid = 0; vid < mesh.VertexCount; ++vid)
            {
                Vector3d newV = new Vector3d(SolverX.X[vid], SolverY.X[vid], SolverZ.X[vid]);
                mesh.SetVertex(vid, newV);
            }

            result_meshes.Add(mesh);
            TestUtil.WriteDebugMeshes(result_meshes, "___CG_result.obj");
        }