protected DMesh3 MakeDebugGraphMesh()
        {
            DMesh3 graphMesh = new DMesh3();

            graphMesh.EnableVertexColors(Vector3f.One);
            foreach (int vid in Graph.VertexIndices())
            {
                if (TipVertices.Contains(vid))
                {
                    MeshEditor.AppendBox(graphMesh, Graph.GetVertex(vid), 0.3f, Colorf.Green);
                }
                else if (TipBaseVertices.Contains(vid))
                {
                    MeshEditor.AppendBox(graphMesh, Graph.GetVertex(vid), 0.225f, Colorf.Magenta);
                }
                else if (GroundVertices.Contains(vid))
                {
                    MeshEditor.AppendBox(graphMesh, Graph.GetVertex(vid), 0.35f, Colorf.Blue);
                }
                else
                {
                    MeshEditor.AppendBox(graphMesh, Graph.GetVertex(vid), 0.15f, Colorf.White);
                }
            }
            foreach (int eid in Graph.EdgeIndices())
            {
                Segment3d seg = Graph.GetEdgeSegment(eid);
                MeshEditor.AppendLine(graphMesh, seg, 0.1f);
            }
            return(graphMesh);
        }
        void constrained_smooth(DGraph3 graph, double surfDist, double dotThresh, double alpha, int rounds)
        {
            int NV = graph.MaxVertexID;

            Vector3d[] pos = new Vector3d[NV];

            for (int ri = 0; ri < rounds; ++ri)
            {
                gParallel.ForEach(graph.VertexIndices(), (vid) => {
                    Vector3d v = graph.GetVertex(vid);

                    if (GroundVertices.Contains(vid) || TipVertices.Contains(vid))
                    {
                        pos[vid] = v;
                        return;
                    }

                    // for tip base vertices, we could allow them to move down and away within angle cone...
                    if (TipBaseVertices.Contains(vid))
                    {
                        pos[vid] = v;
                        return;
                    }


                    // compute smoothed position of vtx
                    Vector3d centroid = Vector3d.Zero; int nbr_count = 0;
                    foreach (int nbr_vid in graph.VtxVerticesItr(vid))
                    {
                        centroid += graph.GetVertex(nbr_vid);
                        nbr_count++;
                    }
                    if (nbr_count == 1)
                    {
                        pos[vid] = v;
                        return;
                    }
                    centroid     /= nbr_count;
                    Vector3d vnew = (1 - alpha) * v + (alpha) * centroid;

                    // make sure we don't violate angle constraint to any nbrs
                    int attempt = 0;
                    try_again:
                    foreach (int nbr_vid in graph.VtxVerticesItr(vid))
                    {
                        Vector3d dv = graph.GetVertex(nbr_vid) - vnew;
                        dv.Normalize();
                        double dot = dv.Dot(Vector3d.AxisY);
                        if (Math.Abs(dot) < dotThresh)
                        {
                            if (attempt++ < 3)
                            {
                                vnew = Vector3d.Lerp(v, vnew, 0.66);
                                goto try_again;
                            }
                            else
                            {
                                pos[vid] = v;
                                return;
                            }
                        }
                    }

                    // offset from nearest point on surface
                    Frame3f fNearest  = MeshQueries.NearestPointFrame(Mesh, MeshSpatial, vnew, true);
                    Vector3d vNearest = fNearest.Origin;
                    double dist       = vnew.Distance(vNearest);
                    bool inside       = MeshSpatial.IsInside(vnew);

                    if (inside || dist < surfDist)
                    {
                        Vector3d normal = fNearest.Z;
                        // don't push down?
                        if (normal.Dot(Vector3d.AxisY) < 0)
                        {
                            normal.y = 0; normal.Normalize();
                        }
                        vnew = fNearest.Origin + surfDist * normal;
                    }


                    pos[vid] = vnew;
                });

                foreach (int vid in graph.VertexIndices())
                {
                    graph.SetVertex(vid, pos[vid]);
                }
            }
        }
        void generate_graph(DenseGrid3f supportGrid, DenseGridTrilinearImplicit distanceField)
        {
            int      ni = supportGrid.ni, nj = supportGrid.nj, nk = supportGrid.nk;
            float    dx     = (float)CellSize;
            Vector3f origin = this.GridOrigin;

            // parameters for initializing cost grid
            float MODEL_SPACE = 0.01f;      // needs small positive so that points on triangles count as inside (eg on ground plane)
            //float MODEL_SPACE = 2.0f*(float)CellSize;
            float CRAZY_DISTANCE   = 99999.0f;
            bool  UNIFORM_DISTANCE = true;
            float MAX_DIST         = 10 * (float)CellSize;


            // parameters for sorting seeds
            Vector3i center_idx = new Vector3i(ni / 2, 0, nk / 2);      // middle
            //Vector3i center_idx = new Vector3i(0, 0, 0);              // corner
            bool reverse_per_layer = true;


            DenseGrid3f costGrid = new DenseGrid3f(supportGrid);

            foreach (Vector3i ijk in costGrid.Indices())
            {
                Vector3d cell_center = new Vector3f(ijk.x * dx, ijk.y * dx, ijk.z * dx) + origin;
                float    f           = (float)distanceField.Value(ref cell_center);
                if (f <= MODEL_SPACE)
                {
                    f = CRAZY_DISTANCE;
                }
                else if (UNIFORM_DISTANCE)
                {
                    f = 1.0f;
                }
                else if (f > MAX_DIST)
                {
                    f = MAX_DIST;
                }
                costGrid[ijk] = f;
            }

            // Find seeds on each layer, sort, and add to accumulated bottom-up seeds list.
            // This sorting has an *enormous* effect on the support generation.

            List <Vector3i> seeds       = new List <Vector3i>();
            List <Vector3i> layer_seeds = new List <Vector3i>();

            for (int j = 0; j < nj; ++j)
            {
                layer_seeds.Clear();
                for (int k = 0; k < nk; ++k)
                {
                    for (int i = 0; i < ni; ++i)
                    {
                        if (supportGrid[i, j, k] == SUPPORT_TIP_BASE)
                        {
                            layer_seeds.Add(new Vector3i(i, j, k));
                        }
                    }
                }

                layer_seeds.Sort((a, b) => {
                    Vector3i pa = a; pa.y = 0;
                    Vector3i pb = b; pb.y = 0;
                    int sa      = (pa - center_idx).LengthSquared, sb = (pb - center_idx).LengthSquared;
                    return(sa.CompareTo(sb));
                });

                // reversing sort order is intresting?
                if (reverse_per_layer)
                {
                    layer_seeds.Reverse();
                }

                seeds.AddRange(layer_seeds);
            }
            HashSet <Vector3i> seed_indices = new HashSet <Vector3i>(seeds);

            // gives very different results...
            if (ProcessBottomUp == false)
            {
                seeds.Reverse();
            }

            // for linear index a, is this a node we allow in graph? (ie graph bounds)
            Func <int, bool> node_filter_f = (a) => {
                Vector3i ai = costGrid.to_index(a);
                // why not y check??
                return(ai.x > 0 && ai.z > 0 && ai.x != ni - 1 && ai.y != nj - 1 && ai.z != nk - 1);
            };

            // distance from linear index a to linear index b
            // this defines the cost field we want to find shortest path through
            Func <int, int, float> node_dist_f = (a, b) => {
                Vector3i ai = costGrid.to_index(a), bi = costGrid.to_index(b);
                if (bi.y >= ai.y)               // b.y should always be a.y-1
                {
                    return(float.MaxValue);
                }
                float sg = supportGrid[bi];

                // don't connect to tips
                //if (sg == SUPPORT_TIP_BASE || sg == SUPPORT_TIP_TOP)
                //    return float.MaxValue;
                if (sg == SUPPORT_TIP_TOP)
                {
                    return(float.MaxValue);
                }

                if (sg < 0)
                {
                    return(-999999);    // if b is already used, we will terminate there, so this is a good choice
                }
                // otherwise cost is sqr-grid-distance + costGrid value  (which is basically distance to surface)
                float c = costGrid[b];
                float f = (float)(Math.Sqrt((bi - ai).LengthSquared) * CellSize);
                //float f = 0;
                return(c + f);
            };

            // which linear-index nbrs to consider for linear index a
            Func <int, IEnumerable <int> > neighbour_f = (a) => {
                Vector3i ai = costGrid.to_index(a);
                return(down_neighbours(ai, costGrid));
            };

            // when do we terminate
            Func <int, bool> terminate_f = (a) => {
                Vector3i ai = costGrid.to_index(a);
                // terminate if we hit existing support path
                if (seed_indices.Contains(ai) == false && supportGrid[ai] < 0)
                {
                    return(true);
                }
                // terminate if we hit ground plane
                if (ai.y == 0)
                {
                    return(true);
                }
                return(false);
            };

            DijkstraGraphDistance dijkstra = new DijkstraGraphDistance(ni * nj * nk, false,
                                                                       node_filter_f, node_dist_f, neighbour_f);

            dijkstra.TrackOrder = true;

            List <int> path = new List <int>();

            Graph = new DGraph3();
            Dictionary <Vector3i, int> CellToGraph = new Dictionary <Vector3i, int>();

            TipVertices     = new HashSet <int>();
            TipBaseVertices = new HashSet <int>();
            GroundVertices  = new HashSet <int>();

            // seeds are tip-base points
            for (int k = 0; k < seeds.Count; ++k)
            {
                // add seed point (which is a tip-base vertex) as seed for dijkstra prop
                int seed = costGrid.to_linear(seeds[k]);
                dijkstra.Reset();
                dijkstra.AddSeed(seed, 0);

                // compute to termination (ground, existing node, etc)
                int base_node = dijkstra.ComputeToNode(terminate_f);
                if (base_node < 0)
                {
                    base_node = dijkstra.GetOrder().Last();
                }

                // extract the path
                path.Clear();
                dijkstra.GetPathToSeed(base_node, path);
                int N = path.Count;

                // first point on path is termination point.
                // create vertex for it if we have not yet
                Vector3i basept_idx = supportGrid.to_index(path[0]);
                int      basept_vid;
                if (CellToGraph.TryGetValue(basept_idx, out basept_vid) == false)
                {
                    Vector3d curv = get_cell_center(basept_idx);
                    if (basept_idx.y == 0)
                    {
                        curv.y = 0;
                    }
                    basept_vid = Graph.AppendVertex(curv);
                    if (basept_idx.y == 0)
                    {
                        GroundVertices.Add(basept_vid);
                    }
                    CellToGraph[basept_idx] = basept_vid;
                }

                int cur_vid = basept_vid;

                // now walk up path and create vertices as necessary
                for (int i = 0; i < N; ++i)
                {
                    int idx = path[i];
                    if (supportGrid[idx] >= 0)
                    {
                        supportGrid[idx] = SUPPORT_GRID_USED;
                    }
                    if (i > 0)
                    {
                        Vector3i next_idx = supportGrid.to_index(path[i]);
                        int      next_vid;
                        if (CellToGraph.TryGetValue(next_idx, out next_vid) == false)
                        {
                            Vector3d nextv = get_cell_center(next_idx);
                            next_vid = Graph.AppendVertex(nextv);
                            CellToGraph[next_idx] = next_vid;
                        }
                        Graph.AppendEdge(cur_vid, next_vid);
                        cur_vid = next_vid;
                    }
                }

                // seed was tip-base so we should always get back there. Then we
                // explicitly add tip-top and edge to it.
                if (supportGrid[path[N - 1]] == SUPPORT_TIP_BASE)
                {
                    Vector3i vec_idx = supportGrid.to_index(path[N - 1]);
                    TipBaseVertices.Add(CellToGraph[vec_idx]);

                    Vector3i tip_idx = vec_idx + Vector3i.AxisY;
                    int      tip_vid;
                    if (CellToGraph.TryGetValue(tip_idx, out tip_vid) == false)
                    {
                        Vector3d tipv = get_cell_center(tip_idx);
                        tip_vid = Graph.AppendVertex(tipv);
                        CellToGraph[tip_idx] = tip_vid;
                        Graph.AppendEdge(cur_vid, tip_vid);
                        TipVertices.Add(tip_vid);
                    }
                }
            }



            /*
             * Snap tips to surface
             */

            gParallel.ForEach(TipVertices, (tip_vid) => {
                bool snapped = false;
                Vector3d v   = Graph.GetVertex(tip_vid);
                Frame3f hitF;
                // try shooting ray straight up. if that hits, and point is close, we use it
                if (MeshQueries.RayHitPointFrame(Mesh, MeshSpatial, new Ray3d(v, Vector3d.AxisY), out hitF))
                {
                    if (v.Distance(hitF.Origin) < 2 * CellSize)
                    {
                        v       = hitF.Origin;
                        snapped = true;
                    }
                }

                // if that failed, try straight down
                if (!snapped)
                {
                    if (MeshQueries.RayHitPointFrame(Mesh, MeshSpatial, new Ray3d(v, -Vector3d.AxisY), out hitF))
                    {
                        if (v.Distance(hitF.Origin) < CellSize)
                        {
                            v       = hitF.Origin;
                            snapped = true;
                        }
                    }
                }

                // if it missed, or hit pt was too far, find nearest point and try that
                if (!snapped)
                {
                    hitF = MeshQueries.NearestPointFrame(Mesh, MeshSpatial, v);
                    if (v.Distance(hitF.Origin) < 2 * CellSize)
                    {
                        v       = hitF.Origin;
                        snapped = true;
                    }
                    // can this ever fail? tips should always be within 2 cells...
                }
                if (snapped)
                {
                    Graph.SetVertex(tip_vid, v);
                }
            });
        }
        public virtual void Generate()
        {
            AxisAlignedBox3d graphBox = Graph.CachedBounds;

            graphBox.Expand(2 * PostRadius);

            double cellSize = (SamplerCellSizeHint == 0) ? (PostRadius / 5) : SamplerCellSizeHint;
            ImplicitFieldSampler3d sampler = new ImplicitFieldSampler3d(graphBox, cellSize);

            ActualCellSize = cellSize;

            // sample segments into graph
            ImplicitLine3d line = new ImplicitLine3d()
            {
                Radius = PostRadius
            };

            foreach (int eid in Graph.EdgeIndices())
            {
                Index2i  ev = Graph.GetEdgeV(eid);
                Vector3d v0 = Graph.GetVertex(ev.a);
                Vector3d v1 = Graph.GetVertex(ev.b);
                double   r  = PostRadius;

                int upper_vid = (v0.y > v1.y) ? ev.a : ev.b;
                if (TipVertices.Contains(upper_vid))
                {
                    r = TipRadius;
                }

                line.Segment = new Segment3d(v0, v1);
                line.Radius  = r;
                sampler.Sample(line, line.Radius / 2);
            }

            foreach (int vid in GroundVertices)
            {
                Vector3d v = Graph.GetVertex(vid);
                sampler.Sample(new ImplicitSphere3d()
                {
                    Origin = v - (PostRadius / 2) * Vector3d.AxisY, Radius = GroundRadius
                });
            }


            ImplicitHalfSpace3d cutPlane = new ImplicitHalfSpace3d()
            {
                Origin = Vector3d.Zero, Normal = Vector3d.AxisY
            };
            ImplicitDifference3d cut = new ImplicitDifference3d()
            {
                A = sampler.ToImplicit(), B = cutPlane
            };

            MarchingCubes mc = new MarchingCubes()
            {
                Implicit = cut, Bounds = graphBox, CubeSize = PostRadius / 3
            };

            mc.Bounds.Min.y  = -2 * mc.CubeSize;
            mc.Bounds.Min.x -= 2 * mc.CubeSize; mc.Bounds.Min.z -= 2 * mc.CubeSize;
            mc.Bounds.Max.x += 2 * mc.CubeSize; mc.Bounds.Max.z += 2 * mc.CubeSize;
            mc.CancelF       = this.Cancelled;
            mc.Generate();

            ResultMesh = mc.Mesh;
        }