/// <summary> /// Finds a perpendicular vector to two given /// TODO: So far only implemented for 3D vectors /// </summary> public static GenTensor <T> VectorCrossProduct(GenTensor <T> a, GenTensor <T> b) { #if ALLOW_EXCEPTIONS if (!a.IsVector || !b.IsVector) { throw new InvalidShapeException($"Both {nameof(a)} and {nameof(b)} should be vectors"); } if (a.Shape[0] != b.Shape[0]) { throw new InvalidShapeException($"Length of {nameof(a)} and {nameof(b)} should be equal"); } if (a.Shape[0] != 3) { throw new NotImplementedException("Other than vectors of the length of 3 aren't supported for VectorCrossProduct yet"); } #endif return(GenTensor <T> .CreateVector( ConstantsAndFunctions <T> .Subtract( ConstantsAndFunctions <T> .Multiply(a[1], b[2]), ConstantsAndFunctions <T> .Multiply(a[2], b[1])), ConstantsAndFunctions <T> .Subtract( ConstantsAndFunctions <T> .Multiply(a[2], b[0]), ConstantsAndFunctions <T> .Multiply(a[0], b[2])), ConstantsAndFunctions <T> .Subtract( ConstantsAndFunctions <T> .Multiply(a[0], b[1]), ConstantsAndFunctions <T> .Multiply(a[1], b[0])) )); }
internal T DeterminantLaplace(int diagLength) { if (diagLength == 1) { return(ConstantsAndFunctions <T> .Forward(this.GetValueNoCheck(0, 0))); } var det = ConstantsAndFunctions <T> .CreateZero(); var sign = ConstantsAndFunctions <T> .CreateOne(); var temp = SquareMatrixFactory <T> .GetMatrix(diagLength); for (int i = 0; i < diagLength; i++) { GetCofactor(this, temp, 0, i, diagLength); det = ConstantsAndFunctions <T> .Add(det, ConstantsAndFunctions <T> .Multiply( sign, ConstantsAndFunctions <T> .Multiply( this.GetValueNoCheck(0, i), temp.DeterminantLaplace(diagLength - 1) )) ); sign = ConstantsAndFunctions <T> .Negate(sign); } return(det); }
private GenTensor <SafeDivisionWrapper <T> > InnerGaussianEliminationSafeDivision(int n) { InitIfNotInitted(); var elemMatrix = GenTensor <SafeDivisionWrapper <T> > .CreateMatrix(n, n, (x, y) => new SafeDivisionWrapper <T>(ConstantsAndFunctions <T> .Forward(this.GetValueNoCheck(x, y))) ); for (int k = 1; k < n; k++) { for (int j = k; j < n; j++) { var m = ConstantsAndFunctions <SafeDivisionWrapper <T> > .Divide( elemMatrix.GetValueNoCheck(j, k - 1), elemMatrix.GetValueNoCheck(k - 1, k - 1) ); for (int i = 0; i < n; i++) { var curr = elemMatrix.GetValueNoCheck(j, i); elemMatrix.SetValueNoCheck(ConstantsAndFunctions <SafeDivisionWrapper <T> > .Subtract( curr, ConstantsAndFunctions <SafeDivisionWrapper <T> > .Multiply( m, elemMatrix.GetValueNoCheck(k - 1, i) ) ), j, i); } } } return(elemMatrix); }
/// <summary> /// Finds matrix multiplication result /// a and b are matrices /// a.Shape[1] should be equal to b.Shape[0] /// the resulting matrix is [a.Shape[0] x b.Shape[1]] shape /// /// O(N^3) /// </summary> public static GenTensor <T> MatrixMultiply(GenTensor <T> a, GenTensor <T> b) { #if ALLOW_EXCEPTIONS if (!a.IsMatrix || !b.IsMatrix) { throw new InvalidShapeException($"Both {nameof(a)} and {nameof(b)} should be matrices"); } if (a.Shape[1] != b.Shape[0]) { throw new InvalidShapeException($"{nameof(a)}'s height must be equal to {nameof(b)}'s width"); } #endif var width = a.Shape[0]; var height = b.Shape[1]; var row = a.Shape[1]; var res = CreateMatrix(width, height); for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { var s = ConstantsAndFunctions <T> .CreateZero(); for (int i = 0; i < row; i++) { var v1 = a.GetValueNoCheck(x, i); var v2 = b.GetValueNoCheck(i, y); s = ConstantsAndFunctions <T> .Add(s, ConstantsAndFunctions <T> .Multiply(v1, v2)); } res.SetValueNoCheck(s, x, y); } } return(res); }
// TODO: how to avoid code duplication? /// <summary> /// Performs simple Gaussian elimination method on a tensor /// /// O(N^3) /// </summary> public T DeterminantGaussianSimple() { #if ALLOW_EXCEPTIONS if (!IsMatrix) { throw new InvalidShapeException("this should be matrix"); } if (Shape[0] != Shape[1]) { throw new InvalidShapeException("this should be square matrix"); } #endif if (Shape[0] == 1) { return(ConstantsAndFunctions <T> .Forward(this.GetValueNoCheck(0, 0))); } var n = Shape[0]; var elemMatrix = this.Forward(); for (int k = 1; k < n; k++) { for (int j = k; j < n; j++) { var m = ConstantsAndFunctions <T> .Divide( ConstantsAndFunctions <T> .Forward(elemMatrix.GetValueNoCheck(j, k - 1)), ConstantsAndFunctions <T> .Forward(elemMatrix.GetValueNoCheck(k - 1, k - 1)) ); for (int i = 0; i < n; i++) { var curr = ConstantsAndFunctions <T> .Forward(elemMatrix.GetValueNoCheck(j, i)); elemMatrix.SetValueNoCheck(ConstantsAndFunctions <T> .Subtract( curr, ConstantsAndFunctions <T> .Multiply( m, elemMatrix.GetValueNoCheck(k - 1, i) ) ), j, i); } } } var det = ConstantsAndFunctions <T> .CreateOne(); for (int i = 0; i < n; i++) { det = ConstantsAndFunctions <T> .Multiply(det, elemMatrix.GetValueNoCheck(i, i)); } return(det); }
private static void InitIfNotInitted() { if (isFracInitted) { return; } isFracInitted = true; ConstantsAndFunctions <SafeDivisionWrapper <T> > .Add = (a, b) => new SafeDivisionWrapper <T>( ConstantsAndFunctions <T> .Add( ConstantsAndFunctions <T> .Multiply(a.num, b.den), ConstantsAndFunctions <T> .Multiply(a.den, b.num) ), ConstantsAndFunctions <T> .Multiply(a.den, b.den) ); ConstantsAndFunctions <SafeDivisionWrapper <T> > .Subtract = (a, b) => new SafeDivisionWrapper <T>( ConstantsAndFunctions <T> .Subtract( ConstantsAndFunctions <T> .Multiply(a.num, b.den), ConstantsAndFunctions <T> .Multiply(a.den, b.num) ), ConstantsAndFunctions <T> .Multiply(a.den, b.den) ); ConstantsAndFunctions <SafeDivisionWrapper <T> > .Multiply = (a, b) => new SafeDivisionWrapper <T>( ConstantsAndFunctions <T> .Multiply(a.num, b.num), ConstantsAndFunctions <T> .Multiply(a.den, b.den) ); ConstantsAndFunctions <SafeDivisionWrapper <T> > .Divide = (a, b) => new SafeDivisionWrapper <T>( ConstantsAndFunctions <T> .Multiply(a.num, b.den), ConstantsAndFunctions <T> .Multiply(a.den, b.num) ); ConstantsAndFunctions <SafeDivisionWrapper <T> > .CreateOne = () => new SafeDivisionWrapper <T>(ConstantsAndFunctions <T> .CreateOne()); }
/// <summary> /// Finds the scalar product of two vectors /// /// O(N) /// </summary> public static T VectorDotProduct(GenTensor <T> a, GenTensor <T> b) { #if ALLOW_EXCEPTIONS if (!a.IsVector || !b.IsVector) { throw new InvalidShapeException($"{nameof(a)} and {nameof(b)} should be vectors"); } if (a.Shape[0] != b.Shape[0]) { throw new InvalidShapeException($"{nameof(a)}'s length should be the same as {nameof(b)}'s"); } #endif var res = ConstantsAndFunctions <T> .CreateZero(); for (int i = 0; i < a.Shape[0]; i++) { res = ConstantsAndFunctions <T> .Add(res, ConstantsAndFunctions <T> .Multiply(a.GetValueNoCheck(i), b.GetValueNoCheck(i))); } return(res); }
/// <summary> /// Finds Determinant with possible overflow /// because it uses fractions for avoiding division /// /// O(N^3) /// </summary> internal T DeterminantGaussianSafeDivision(int diagLength) { InitIfNotInitted(); #if ALLOW_EXCEPTIONS if (!IsMatrix) { throw new InvalidShapeException("this should be matrix"); } if (Shape[0] != Shape[1]) { throw new InvalidShapeException("this should be square matrix"); } #endif if (Shape[0] == 1) { return(ConstantsAndFunctions <T> .Forward(this.GetValueNoCheck(0, 0))); } var n = diagLength; var elemMatrix = InnerGaussianEliminationSafeDivision(n); var det = ConstantsAndFunctions <SafeDivisionWrapper <T> > .CreateOne(); for (int i = 0; i < n; i++) { det = ConstantsAndFunctions <SafeDivisionWrapper <T> > .Multiply(det, elemMatrix.GetValueNoCheck(i, i)); } if (ConstantsAndFunctions <T> .IsZero(det.den)) { return(ConstantsAndFunctions <T> .CreateZero()); } return(det.Count()); }
public static GenTensor <T> PiecewiseMultiply(GenTensor <T> a, T b) => CreateTensor(a.Shape, ind => ConstantsAndFunctions <T> .Multiply(a[ind], b));