Exemple #1
0
        public void ClassificationStackingEnsembleLearner_CreateMetaFeatures_Then_Learn()
        {
            var learners = new IIndexedLearner <ProbabilityPrediction>[]
            {
                new ClassificationDecisionTreeLearner(2),
                new ClassificationDecisionTreeLearner(5),
                new ClassificationDecisionTreeLearner(7),
                new ClassificationDecisionTreeLearner(9)
            };

            var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9),
                                                                new RandomCrossValidation <ProbabilityPrediction>(5, 23), false);

            var parser       = new CsvParser(() => new StringReader(Resources.Glass));
            var observations = parser.EnumerateRows(v => v != "Target").ToF64Matrix();
            var targets      = parser.EnumerateRows("Target").ToF64Vector();

            var metaObservations = sut.LearnMetaFeatures(observations, targets);
            var model            = sut.LearnStackingModel(observations, metaObservations, targets);

            var predictions = model.Predict(observations);

            var metric = new TotalErrorClassificationMetric <double>();
            var actual = metric.Error(targets, predictions);

            Assert.AreEqual(0.63551401869158874, actual, 0.0001);
        }
Exemple #2
0
        public void ClassificationStackingEnsembleLearner_CreateMetaFeatures_Then_Learn()
        {
            var learners = new IIndexedLearner <ProbabilityPrediction>[]
            {
                new ClassificationDecisionTreeLearner(2),
                new ClassificationDecisionTreeLearner(5),
                new ClassificationDecisionTreeLearner(7),
                new ClassificationDecisionTreeLearner(9)
            };

            var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9),
                                                                new RandomCrossValidation <ProbabilityPrediction>(5, 23), false);

            var(observations, targets) = DataSetUtilities.LoadGlassDataSet();

            var metaObservations = sut.LearnMetaFeatures(observations, targets);
            var model            = sut.LearnStackingModel(observations, metaObservations, targets);

            var predictions = model.Predict(observations);

            var metric = new TotalErrorClassificationMetric <double>();
            var actual = metric.Error(targets, predictions);

            Assert.AreEqual(0.63551401869158874, actual, 0.0001);
        }