/// <summary> /// Constructs suitable quadrature rules cells in /// <paramref name="mask"/>. /// </summary> /// <param name="mask"> /// Cells for which quadrature rules shall be created /// </param> /// <param name="order"> /// Desired order of the moment-fitting system. Assuming that /// <see cref="surfaceRuleFactory"/> integrates the basis polynomials /// exactly over the zero iso-contour (which it usually /// doesn't!), the resulting quadrature rules will be exact up to this /// order. /// </param> /// <returns>A set of quadrature rules</returns> /// <remarks> /// Since the selected level set is generally discontinuous across cell /// boundaries, this method does not make use of the fact that /// neighboring cells share edges. That is, the optimization will be /// performed twice for each inner edge in <paramref name="mask"/>. /// </remarks> public IEnumerable <IChunkRulePair <QuadRule> > GetQuadRuleSet(ExecutionMask mask, int order) { using (var tr = new FuncTrace()) { CellMask cellMask = mask as CellMask; if (cellMask == null) { throw new ArgumentException("Mask must be a volume mask", "mask"); } // Note: This is a parallel call, so do this early to avoid parallel confusion localCellIndex2SubgridIndex = new SubGrid(cellMask).LocalCellIndex2SubgridIndex; int maxLambdaDegree = order + 1; int noOfLambdas = GetNumberOfLambdas(maxLambdaDegree); int noOfEdges = LevelSetData.GridDat.Grid.RefElements[0].NoOfFaces; int D = RefElement.SpatialDimension; // Get the basis polynomials and integrate them analytically Polynomial[] basePolynomials = RefElement.GetOrthonormalPolynomials(order).ToArray(); Polynomial[] polynomials = new Polynomial[basePolynomials.Length * D]; for (int i = 0; i < basePolynomials.Length; i++) { Polynomial p = basePolynomials[i]; for (int d = 0; d < D; d++) { Polynomial pNew = p.CloneAs(); for (int j = 0; j < p.Coeff.Length; j++) { pNew.Exponents[j, d]++; pNew.Coeff[j] /= pNew.Exponents[j, d]; pNew.Coeff[j] /= D; // Make sure divergence is Phi again } polynomials[i * D + d] = pNew; } } // basePolynomials[i] == div(polynomials[i*D], ... , polynomials[i*D + D - 1]) lambdaBasis = new PolynomialList(polynomials); if (RestrictNodes) { trafos = new AffineTrafo[mask.NoOfItemsLocally]; foreach (Chunk chunk in mask) { foreach (var cell in chunk.Elements.AsSmartEnumerable()) { CellMask singleElementMask = new CellMask( LevelSetData.GridDat, Chunk.GetSingleElementChunk(cell.Value)); LineAndPointQuadratureFactory.LineQRF lineFactory = this.edgeRuleFactory as LineAndPointQuadratureFactory.LineQRF; if (lineFactory == null) { throw new Exception(); } var lineRule = lineFactory.GetQuadRuleSet(singleElementMask, order).Single().Rule; var pointRule = lineFactory.m_Owner.GetPointFactory().GetQuadRuleSet(singleElementMask, order).Single().Rule; // Also add point rule points since line rule points // are constructed from Gauss rules that do not include // the end points BoundingBox box = new BoundingBox(lineRule.Nodes); box.AddPoints(pointRule.Nodes); int noOfRoots = pointRule.Nodes.GetLength(0); if (noOfRoots <= 1) { // Cell is considered cut because the level set // is very close, but actually isn't. Note that // we can NOT omit the cell (as in the surface // case) as it will be missing in the list of // uncut cells, i.e. this cell would be ignored // completely trafos[localCellIndex2SubgridIndex[cell.Value]] = AffineTrafo.Identity(RefElement.SpatialDimension); continue; } else if (noOfRoots == 2) { // Go a bit into the direction of the normal // from the center between the nodes in order // not to miss regions with strong curvature double[] center = box.Min.CloneAs(); center.AccV(1.0, box.Max); center.ScaleV(0.5); NodeSet centerNode = new NodeSet(RefElement, center); centerNode.LockForever(); MultidimensionalArray normal = LevelSetData.GetLevelSetReferenceNormals(centerNode, cell.Value, 1); MultidimensionalArray dist = LevelSetData.GetLevSetValues(centerNode, cell.Value, 1); double scaling = Math.Sqrt(LevelSetData.GridDat.Cells.JacobiDet[cell.Value]); double[] newPoint = new double[D]; for (int d = 0; d < D; d++) { newPoint[d] = center[d] - normal[0, 0, d] * dist[0, 0] / scaling; } box.AddPoint(newPoint); // Make sure points stay in box for (int d = 0; d < D; d++) { box.Min[d] = Math.Max(box.Min[d], -1); box.Max[d] = Math.Min(box.Max[d], 1); } } MultidimensionalArray preImage = RefElement.Vertices.ExtractSubArrayShallow( new int[] { 0, 0 }, new int[] { D, D - 1 }); MultidimensionalArray image = MultidimensionalArray.Create(D + 1, D); image[0, 0] = box.Min[0]; // Top left image[0, 1] = box.Max[1]; image[1, 0] = box.Max[0]; // Top right image[1, 1] = box.Max[1]; image[2, 0] = box.Min[0]; // Bottom left; image[2, 1] = box.Min[1]; AffineTrafo trafo = AffineTrafo.FromPoints(preImage, image); trafos[localCellIndex2SubgridIndex[cell.Value]] = trafo; } } } LambdaCellBoundaryQuadrature cellBoundaryQuadrature = new LambdaCellBoundaryQuadrature(this, edgeRuleFactory, cellMask); cellBoundaryQuadrature.Execute(); LambdaLevelSetSurfaceQuadrature surfaceQuadrature = new LambdaLevelSetSurfaceQuadrature(this, surfaceRuleFactory, cellMask); surfaceQuadrature.Execute(); // Must happen _after_ all parallel calls (e.g., definition of // the sub-grid or quadrature) in order to avoid problems in // parallel runs if (mask.NoOfItemsLocally == 0) { var empty = new ChunkRulePair <QuadRule> [0]; return(empty); } if (cachedRules.ContainsKey(order)) { order = cachedRules.Keys.Where(cachedOrder => cachedOrder >= order).Min(); CellMask cachedMask = new CellMask(mask.GridData, cachedRules[order].Select(p => p.Chunk).ToArray()); if (cachedMask.Equals(mask)) { return(cachedRules[order]); } else { throw new NotImplementedException( "Case not yet covered yet in combination with caching; deactivate caching to get rid of this message"); } } double[,] quadResults = cellBoundaryQuadrature.Results; foreach (Chunk chunk in mask) { for (int i = 0; i < chunk.Len; i++) { int iSubGrid = localCellIndex2SubgridIndex[chunk.i0 + i]; switch (jumpType) { case JumpTypes.Heaviside: for (int k = 0; k < noOfLambdas; k++) { quadResults[iSubGrid, k] -= surfaceQuadrature.Results[iSubGrid, k]; } break; case JumpTypes.OneMinusHeaviside: for (int k = 0; k < noOfLambdas; k++) { quadResults[iSubGrid, k] += surfaceQuadrature.Results[iSubGrid, k]; } break; case JumpTypes.Sign: for (int k = 0; k < noOfLambdas; k++) { quadResults[iSubGrid, k] -= 2.0 * surfaceQuadrature.Results[iSubGrid, k]; } break; default: throw new NotImplementedException(); } } } BitArray voidCellsArray = new BitArray(LevelSetData.GridDat.Cells.NoOfLocalUpdatedCells); BitArray fullCellsArray = new BitArray(LevelSetData.GridDat.Cells.NoOfLocalUpdatedCells); foreach (Chunk chunk in cellMask) { foreach (var cell in chunk.Elements) { double rhsL2Norm = 0.0; for (int k = 0; k < noOfLambdas; k++) { double entry = quadResults[localCellIndex2SubgridIndex[cell], k]; rhsL2Norm += entry * entry; } if (rhsL2Norm < 1e-14) { // All integrals are zero => cell not really cut // (level set is tangent) and fully in void region voidCellsArray[cell] = true; continue; } double l2NormFirstIntegral = quadResults[localCellIndex2SubgridIndex[cell], 0]; l2NormFirstIntegral *= l2NormFirstIntegral; double rhsL2NormWithoutFirst = rhsL2Norm - l2NormFirstIntegral; // Beware: This check is only sensible if basis is orthonormal on RefElement! if (rhsL2NormWithoutFirst < 1e-14 && Math.Abs(l2NormFirstIntegral - RefElement.Volume) < 1e-14) { // All integrals are zero except integral over first integrand // If basis is orthonormal, this implies that cell is uncut and // fully in non-void region since then // \int_K \Phi_i dV = \int_A \Phi_i dV = \delta_{0,i} // However, we have to compare RefElement.Volume since // integration is performed in reference coordinates! fullCellsArray[cell] = true; } } } var result = new List <ChunkRulePair <QuadRule> >(cellMask.NoOfItemsLocally); CellMask emptyCells = new CellMask(LevelSetData.GridDat, voidCellsArray); foreach (Chunk chunk in emptyCells) { foreach (int cell in chunk.Elements) { QuadRule emptyRule = QuadRule.CreateEmpty(RefElement, 1, RefElement.SpatialDimension); emptyRule.Nodes.LockForever(); result.Add(new ChunkRulePair <QuadRule>( Chunk.GetSingleElementChunk(cell), emptyRule)); } } CellMask fullCells = new CellMask(LevelSetData.GridDat, fullCellsArray); foreach (Chunk chunk in fullCells) { foreach (int cell in chunk.Elements) { QuadRule fullRule = RefElement.GetQuadratureRule(order); result.Add(new ChunkRulePair <QuadRule>( Chunk.GetSingleElementChunk(cell), fullRule)); } } CellMask realCutCells = cellMask.Except(emptyCells).Except(fullCells); if (RestrictNodes) { foreach (Chunk chunk in realCutCells) { foreach (int cell in chunk.Elements) { CellMask singleElementMask = new CellMask( LevelSetData.GridDat, Chunk.GetSingleElementChunk(cell)); AffineTrafo trafo = trafos[localCellIndex2SubgridIndex[cell]]; Debug.Assert(Math.Abs(trafo.Matrix.Determinant()) > 1e-10); NodeSet nodes = GetNodes(noOfLambdas).CloneAs(); NodeSet mappedNodes = new NodeSet(RefElement, trafo.Transform(nodes)); mappedNodes.LockForever(); // Remove nodes in negative part MultidimensionalArray levelSetValues = LevelSetData.GetLevSetValues(mappedNodes, cell, 1); List <int> nodesToBeCopied = new List <int>(mappedNodes.GetLength(0)); for (int n = 0; n < nodes.GetLength(0); n++) { if (levelSetValues[0, n] >= 0.0) { nodesToBeCopied.Add(n); } } NodeSet reducedNodes = new NodeSet( this.RefElement, nodesToBeCopied.Count, D); for (int n = 0; n < nodesToBeCopied.Count; n++) { for (int d = 0; d < D; d++) { reducedNodes[n, d] = mappedNodes[nodesToBeCopied[n], d]; } } reducedNodes.LockForever(); QuadRule optimizedRule = GetOptimizedRule( cell, trafo, reducedNodes, quadResults, order); result.Add(new ChunkRulePair <QuadRule>( singleElementMask.Single(), optimizedRule)); } } } else { // Use same nodes in all cells QuadRule[] optimizedRules = GetOptimizedRules( realCutCells, GetNodes(noOfLambdas), quadResults, order); int ruleIndex = 0; foreach (Chunk chunk in realCutCells) { foreach (var cell in chunk.Elements) { result.Add(new ChunkRulePair <QuadRule>( Chunk.GetSingleElementChunk(cell), optimizedRules[ruleIndex])); ruleIndex++; } } } cachedRules[order] = result.OrderBy(p => p.Chunk.i0).ToArray(); return(cachedRules[order]); } }