static public List <CardAIPlanData> ProduceCastPlans(CardAI ai, CardAIPlanData data, List <NetSkill> skills, int count) { List <CardAIPlanData> plans = new List <CardAIPlanData>(skills.Count); NetBattlefield bf = data.bf; for (int i = 0; i < skills.Count; i++) { NetSkill ns = skills[i]; IEnumerator <List <int> > targetEnumerator = null; for (int k = 0; k < count; k++) { CardAIPlanData d = CastSkillOnece(ai, ns, ns.GetOwner(bf), data, bf.CloneAndRemember(), targetEnumerator); if (d.valid) { if (targetEnumerator == null) { targetEnumerator = d.GetTopCardPlay().targetEnumerator; } plans.Add(d); } } } return(plans); }
static List <CardAIPlanData> RefineMultiCastPlan(CardAI ai, CardAIPlanData entryState, List <CardAIPlanData> plans) { NetBattlefield bf = entryState.bf; //get top plans and try to refine them int min = Mathf.Min(plans.Count, ai.refiningSize); for (int i = 0; i < min; i++) { for (int k = 0; k < ai.intensity; k++) { //prepare source for cast copying target enumerator so that it can be reused by the further casts CardAIPlanData source = entryState; NetSkill ns = bf.GetSkillByID(plans[i].GetTopCardPlay().skill); //cast form the source plan data so that it is not casted "after" action we want to reiterate to different targets CardAIPlanData d = CastSkillOnece(ai, ns, ns.GetOwner(bf), source, bf.CloneAndRemember(), plans[i].GetTopCardPlay().targetEnumerator); if (d.valid && plans[i].value < d.value) { d.SetEnumerator(plans[i].GetTopCardPlay().targetEnumerator); plans[i] = d; } } } //select best plan per skill return(plans.GetRange(0, min)); }
//this section will try to find positions which may endup important with the secondary cast //eg splashing support skills. //TODO: ?? // It would also find indescribable positions // eg current opponent attack splash positions. //NOTE: if no important positions are found only single casts would be considered to safe //computation power static List <int> FindImportantPositions(CardAI ai, CardAIPlanData data, List <NetSkill> consideredSkills) { List <int> importantPositions = null; //if there is no skills which can be used there is no activity to consider if (consideredSkills == null || consideredSkills.Count < 1) { return(importantPositions); } //if there is no allied cards on BF then simply skip this stage if (data.bf.GetOwnLivingCardsBFPositions(ai.playerID).Count < 1) { return(importantPositions); } //consider all friend targeting skills, //if they splash get their possible current targets //and use them to produce splash positions foreach (var v in consideredSkills) { if (v.IsCastingSpell() && v.IsSplashng()) { Script s = v.GetSubSkill().targets.script2; List <int> pos = v.FindValidTargets(data.bf, -1); if (pos != null) { if (pos.FindIndex(o => data.bf.IsBattleSlot(o) && !data.bf.IsSlotFree(o) && data.bf.IsSameSideSlot(ai.playerID, o)) == -1) { //this skill does not have allied targets continue; } List <int> sec = v.FindSecondaryTargets(data.bf, -1, pos); if (sec == null) { continue; } if (importantPositions == null) { importantPositions = new List <int>(); } importantPositions.Union(sec); } } } return(importantPositions); }
static CardAIPlanData ProduceSingleRefination(CardAI ai, CardAIPlanData entryState, CardAIPlanData plan) { NetBattlefield bf = entryState.bf; NetSkill ns = bf.GetSkillByID(plan.GetTopCardPlay().skill); //cast form the source plan data so that it is not casted "after" action we want to reiterate to different targets CardAIPlanData d = CastSkillOnece(ai, ns, ns.GetOwner(bf), entryState, bf.CloneAndRemember(), plan.GetTopCardPlay().targetEnumerator); if (d.valid && plan.value < d.value) { d.SetEnumerator(plan.GetTopCardPlay().targetEnumerator); } return(d); }
// // static public CardAIPlanData _ProducePlan(int playerID, CardAIPlanData data, int avaliableAP, MHRandom r, int calculationIntensity = 1) // { // if (calculationIntensity < 1 ) // { // Debug.LogError("[ERROR]0 level for AI will nto produce any plans!, Increase calculation intensity to minimum 1!"); // return new CardAIPlanData(); // } // // NetBattlefield bf = data.bf; // // List<NetCard> cards = CardsWithinAPRange(playerID, bf, avaliableAP); // if (cards == null) return new CardAIPlanData(); // // List<NetSkill> skills = SelectSkillsToCast(cards); // if (skills == null || skills.Count == 0) return new CardAIPlanData(); // // bool friendlyTurn = playerID > 0; // // //Do single cast of all skills to build some expectations // CardAIPlanData[] plans = new CardAIPlanData[skills.Count]; // // for (int i=0; i<skills.Count; i++) // { // NetSkill ns = skills[i]; // CardAIPlanData d = CastSkillOnece(friendlyTurn, ns, ns.GetOwner(bf), data, bf.CloneAndRemember(), r); // if (d.valid) // { // plans[i] = d; // } // } // // //sort result based on their value // List<CardAIPlanData> plansL = new List<CardAIPlanData>(plans); // plansL.Sort(delegate (CardAIPlanData a, CardAIPlanData b) // { // return a.value.CompareTo(b.value); // }); // // //get top plans and try to refine them before selecting the best // int min = Mathf.Min(plansL.Count, calculationIntensity); // plansL = plansL.GetRange(0, min); // // int refiningLevel = 8; // plans = new CardAIPlanData[plansL.Count * refiningLevel]; // for(int i=0; i < plansL.Count; i++) // { // for(int k=0; k< refiningLevel; k++) // { // //plansL[i].validTargets // } // } // // // Start secondary plans from the selected plans // return new CardAIPlanData(); // } static public List <NetCard> CardsWithinAPRange(CardAI ai, NetBattlefield bf, int testedAPRange) { NetListInt ni = bf.GetPlayerByPlayerID(ai.playerID).HandCards; if (NetType.IsNullOrEmpty(ni)) { return(null); } List <NetCard> ncs = new List <NetCard>(); foreach (var v in ni.value) { NetCard nc = bf.GetCardByID(v); if (nc.GetCastingCost() <= testedAPRange) { ncs.Add(nc); } } return(ncs); }
static List <NetSkill> WillDoTwoCastSimulation(CardAI ai, CardAIPlanData data, List <NetSkill> consideredSkills) { List <NetSkill> supportSkills = new List <NetSkill>(); //if there is no skills which can be used there is no activity to consider if (consideredSkills == null || consideredSkills.Count < 1) { return(supportSkills); } NetBattlefield bf = null; foreach (var v in consideredSkills) { if (v.IsCastingSpell()) { if (bf == null) { bf = ProduceFakeBFIfNeeded(ai.playerID, data.bf); } List <int> pos = v.FindValidTargets(bf, -1); if (pos != null) { if (pos.FindIndex(o => bf.IsBattleSlot(o) && !bf.IsSlotFree(o) && bf.IsSameSideSlot(ai.playerID, o)) == -1) { //this skill does not have allied targets continue; } supportSkills.Add(v); } } } return(supportSkills); }
static List <CardAIPlanData> ProduceRefinePlans(CardAI ai, CardAIPlanData entryState, List <CardAIPlanData> plans) { NetBattlefield bf = entryState.bf; //get top plans and try to refine them int min = Mathf.Min(plans.Count, ai.refiningSize); for (int i = 0; i < min; i++) { for (int k = 0; k < ai.intensity; k++) { CardAIPlanData d = ProduceSingleRefination(ai, entryState, plans[i]); if (d.valid && plans[i].value < d.value) { d.SetEnumerator(plans[i].GetTopCardPlay().targetEnumerator); plans[i] = d; } } } //select best plan per skill return(plans.GetRange(0, min)); }
static IEnumerator <List <int> > GetTargetEnumerator(NetSkill ns, NetCard nc, IList <int> potentialTargets, CardAI ai) { if (potentialTargets.Count < 1) { return(null); } Subskill ss = ns.GetSubSkill(); int count = 0; if (ss.trigger.triggerGroup == ETriggerGroupType.DoAttack || ss.trigger.triggerGroup == ETriggerGroupType.DoAlternateAttack) { count = 1; } else { if (potentialTargets.Count < ss.targets.targetCountRange.minimumCount) { return(null); } if (potentialTargets.Count <= ss.targets.targetCountRange.maximumCount) { count = potentialTargets.Count; } else { count = ss.targets.targetCountRange.maximumCount; } } List <int> pt = new List <int>(potentialTargets); pt.Sort(delegate(int a, int b) { if (ai.preferredStrategicPlaces != null) { bool stratA = ai.preferredStrategicPlaces.Contains(a); bool stratB = ai.preferredStrategicPlaces.Contains(b); if (stratA != stratB) { return(stratA ? -1 : 1); } //if they are the same use regular random } return(ai.r.GetInt(0, 2) - 1); }); var lu = new ListUtils(pt, count); return(lu.GetEnumerator()); }
static CardAIPlanData CastSkillOnece(CardAI ai, NetSkill ns, NetCard nc, CardAIPlanData data, NetBattlefield bf, IEnumerator <List <int> > targetEnumerator) { //structure makes a new copy CardAIPlanData result = data; //using previous bf allows to utilize already cached data, as well as share caching with following casts. //later we will use new bf to ensure we do not override the same bf. NetBattlefield prevBf = data.bf; IList <int> targets = GetPlayCardTargets(ai.FriendlyTurn, ns, nc, prevBf); if (targets == null || targets.Count < 1) { return(new CardAIPlanData()); } if (targetEnumerator == null) { targetEnumerator = GetTargetEnumerator(ns, nc, targets, ai); if (targetEnumerator == null) { return(new CardAIPlanData()); } } targetEnumerator.MoveNext(); List <int> selectedTargets = targetEnumerator.Current; if (selectedTargets == null || selectedTargets.Count == 0) { return(new CardAIPlanData()); } List <int> secTargets = GetSecondaryPlayTargets(ns, nc, prevBf, selectedTargets, ai.r); FInt skillDelay = ns.GetSkillDelay(prevBf); int cost = prevBf.GetCardCastingCostFast(ns.GetOwner(prevBf).CardID); //add cost if something need to be casted next turn by AI var ncp = bf.GetPlayerByPlayerID(ai.playerID); if (cost > ncp.ApLeft) { skillDelay += 2; } //operate from now on its own bf result.bf = bf; NetQueueItem q; if (ns.IsCastingSpell()) { q = new NetQueueItem(bf, ns, new NetListInt(selectedTargets), new NetListInt(secTargets), skillDelay, -1); } else { q = new NetQueueItem(bf, ns, null, null, skillDelay, selectedTargets[0]); } //if ap cost were larger than current ap then we will result in negative ap. //because its just simulation we do not care for that now, as the sum of this and next turn ap //for estimating cost would be identical ncp.ApLeft -= nc.GetCastingCost(); bf.PlayCard(q, ai.r); float value = bf.GetValueByCloneSimulation(ai.iterations, ai.r); result.value = value; result.AddCardPlay(nc.CardID, ns.SkillInBattleID, q); result.SetEnumerator(targetEnumerator); result.valid = true; return(result); }
// AI 2.0 #region Core planning static public CardAIPlanData ProducePlan(CardAI ai, CardAIPlanData data, bool allowTwoStages) { if (ai.intensity < 1) { Debug.LogError("[ERROR]0 level for AI will not produce any plans!, Increase calculation intensity to minimum 1!"); return(new CardAIPlanData()); } NetBattlefield bf = data.bf; int apNextTurn = bf.APNextTurn(ai.playerID); int leftAP = bf.LeftAPThisTurn(ai.playerID) + apNextTurn; float value = bf.GetValueByCloneSimulation(ai.iterations, ai.r); List <NetCard> cards = CardsWithinAPRange(ai, bf, ai.totalAP); if (cards == null) { return(new CardAIPlanData()); } List <NetSkill> supportSkills2 = new List <NetSkill>(); List <NetSkill> skills = SelectSkillsToCast(cards); if (skills == null || skills.Count == 0) { Debug.LogWarning("[!! AI] Avaliable skills to cast = 0"); return(new CardAIPlanData()); } List <NetSkill> skills2 = null; List <int> importantPos = null; #region detect potential two-cast suggestions if (allowTwoStages) { List <NetCard> cards2 = CardsWithinAPRange(ai, bf, ai.totalAP - 1); if (cards2 != null) { skills2 = SelectSkillsToCast(cards2); //two cast simulation would be considered only in case of at least two skills //being of value for that activity if (skills2 != null && skills2.Count > 1) { supportSkills2 = WillDoTwoCastSimulation(ai, data, skills2); if (supportSkills2.Count > 0) { importantPos = FindImportantPositions(ai, data, supportSkills2); } //expensive casts which exhausts available AP will be casted as single-casts //support skills will be casted as single-casts //cheap enough non-supports will be BASE for multi-casts //then supports skills will be casted on top skills2 = skills2.Except(supportSkills2).ToList(); skills = skills.Except(skills2).ToList(); } } } #endregion #region produce single-cast results List <CardAIPlanData> plans = ProduceCastPlans(ai, data, skills, 1); if (plans != null && plans.Count > 0) { plans.Sort(PlanSorter); plans = ProduceRefinePlans(ai, data, plans); } #endregion #region produce two-cast results. //TODO start by doing first layer of casts, with preferences if possible if (skills2 != null && skills2.Count > 0) { List <CardAIPlanData> plans2 = ProduceCastPlans(ai, data, skills2, 1); if (plans2 != null && plans2.Count > 0) { plans2.Sort(PlanSorter); plans2 = ProduceRefinePlans(ai, data, plans2); plans.AddRange(plans2); } //if supports are possible validate do another single turn pass for remaining skills. if (supportSkills2 != null && supportSkills2.Count > 0) { //register important positions if any to ensure they are preferred during position planning. ai.preferredStrategicPlaces = importantPos; //First Cast plans2 = ProduceCastPlans(ai, data, skills2, 1); if (plans2 != null && plans2.Count > 0) { plans2.Sort(PlanSorter); plans2 = ProduceRefinePlans(ai, data, plans2); //Second Cast (aka support cast) //Use first plan and select boosts which seems to be most efficient among available options. //this does one base cast and then one boost for each which account for: AxB List <CardAIPlanData> supportPlans = new List <CardAIPlanData>(); if (plans2 != null && plans2.Count > 0) { for (int i = 0; i < ai.supportCasts && i < plans2.Count; i++) { CardAIPlanData plan = plans2[i]; supportPlans.AddRange(ProduceCastPlans(ai, plan, supportSkills2, 1)); } } // select the best result of AxB to find the best theoretical result after two casts //do deeper planning for the base positioning and then cast support skills on the chosen plan to //acquire actual final value supportPlans.Sort(PlanSorter); if (supportPlans.Count > 0) { CardAIPlanData cpd = supportPlans[0]; CardAIPlanData planBase = plans2.Find(o => o.firstPlay.skill == cpd.firstPlay.skill); CardAIPlanData result = ProduceSingleRefination(ai, data, planBase); if (result.valid) { List <CardAIPlanData> results = ProduceCastPlans(ai, result, supportSkills2, 1); if (results != null && results.Count > 0) { results.Sort(PlanSorter); results = ProduceRefinePlans(ai, data, results); plans.AddRange(results); } } } } } } #endregion #region compare all results and select the best // all results are compared based on how much AP they use. // positive gain produced by all results are based on final result and final AP cost // GainedAdvantage / (2 + AP used) which results in: // 1/2 multiplier for 1 AP actions // 1/3 multiplier for 2 AP actions // 1/4 multiplier for 3+ AP actions // Single-casts would be considered as if they would use-up AvaliableAP amount // to ensure we do not consider them better even though they cannot provide any better results //if two-cast actions are available to some actions // aka: there is no point in having cheaper cost if AP cannot be later used. if (plans.Count == 0) { Debug.LogWarning("[!! AI] Available plans = 0"); return(new CardAIPlanData()); } CardAIPlanData selected = plans[0]; float selectedV = float.MinValue; for (int i = 0; i < plans.Count; i++) { CardAIPlanData cpd = plans[i]; int newLeftAP = cpd.bf.LeftAPThisTurn(ai.playerID) + apNextTurn; int apUsed = leftAP - newLeftAP; float v = cpd.value - value; v = v / (1f + apUsed); if (selectedV < v) { selected = plans[i]; selectedV = v; } } #endregion return(selected); }