//Static methods

    //////////////////////////////// Implementation ///////////////////////////////

    public static CAAPhysicalJupiterDetails Calculate(double JD)
    {
        //What will be the return value
        CAAPhysicalJupiterDetails details = new CAAPhysicalJupiterDetails();

        //Step 1
        double d         = JD - 2433282.5;
        double T1        = d / 36525;
        double alpha0    = 268.00 + 0.1061 * T1;
        double alpha0rad = CT.D2R(alpha0);
        double delta0    = 64.50 - 0.0164 * T1;
        double delta0rad = CT.D2R(delta0);

        //Step 2
        double W1 = CT.M360(17.710 + 877.90003539 * d);
        double W2 = CT.M360(16.838 + 870.27003539 * d);

        //Step 3
        double l0    = CAAEarth.EclipticLongitude(JD);
        double l0rad = CT.D2R(l0);
        double b0    = CAAEarth.EclipticLatitude(JD);
        double b0rad = CT.D2R(b0);
        double R     = CAAEarth.RadiusVector(JD);

        //Step 4
        double l    = CAAJupiter.EclipticLongitude(JD);
        double lrad = CT.D2R(l);
        double b    = CAAJupiter.EclipticLatitude(JD);
        double brad = CT.D2R(b);
        double r    = CAAJupiter.RadiusVector(JD);

        //Step 5
        double x     = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad);
        double y     = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad);
        double z     = r * Math.Sin(brad) - R * Math.Sin(b0rad);
        double DELTA = Math.Sqrt(x * x + y * y + z * z);

        //Step 6
        l   -= 0.012990 * DELTA / (r * r);
        lrad = CT.D2R(l);

        //Step 7
        x     = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad);
        y     = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad);
        z     = r * Math.Sin(brad) - R * Math.Sin(b0rad);
        DELTA = Math.Sqrt(x * x + y * y + z * z);

        //Step 8
        double e0    = CAANutation.MeanObliquityOfEcliptic(JD);
        double e0rad = CT.D2R(e0);

        //Step 9
        double alphas = Math.Atan2(Math.Cos(e0rad) * Math.Sin(lrad) - Math.Sin(e0rad) * Math.Tan(brad), Math.Cos(lrad));
        double deltas = Math.Asin(Math.Cos(e0rad) * Math.Sin(brad) + Math.Sin(e0rad) * Math.Cos(brad) * Math.Sin(lrad));

        //Step 10
        details.DS = CT.R2D(Math.Asin(-Math.Sin(delta0rad) * Math.Sin(deltas) - Math.Cos(delta0rad) * Math.Cos(deltas) * Math.Cos(alpha0rad - alphas)));

        //Step 11
        double u        = y * Math.Cos(e0rad) - z * Math.Sin(e0rad);
        double v        = y * Math.Sin(e0rad) + z * Math.Cos(e0rad);
        double alpharad = Math.Atan2(u, x);
        double alpha    = CT.R2D(alpharad);
        double deltarad = Math.Atan2(v, Math.Sqrt(x * x + u * u));
        double delta    = CT.R2D(deltarad);
        double xi       = Math.Atan2(Math.Sin(delta0rad) * Math.Cos(deltarad) * Math.Cos(alpha0rad - alpharad) - Math.Sin(deltarad) * Math.Cos(delta0rad), Math.Cos(deltarad) * Math.Sin(alpha0rad - alpharad));

        //Step 12
        details.DE = CT.R2D(Math.Asin(-Math.Sin(delta0rad) * Math.Sin(deltarad) - Math.Cos(delta0rad) * Math.Cos(deltarad) * Math.Cos(alpha0rad - alpharad)));

        //Step 13
        details.Geometricw1 = CT.M360(W1 - CT.R2D(xi) - 5.07033 * DELTA);
        details.Geometricw2 = CT.M360(W2 - CT.R2D(xi) - 5.02626 * DELTA);

        //Step 14
        double C = 57.2958 * (2 * r * DELTA + R * R - r * r - DELTA * DELTA) / (4 * r * DELTA);

        if (Math.Sin(lrad - l0rad) > 0)
        {
            details.Apparentw1 = CT.M360(details.Geometricw1 + C);
            details.Apparentw2 = CT.M360(details.Geometricw2 + C);
        }
        else
        {
            details.Apparentw1 = CT.M360(details.Geometricw1 - C);
            details.Apparentw2 = CT.M360(details.Geometricw2 - C);
        }

        //Step 15
        double NutationInLongitude = CAANutation.NutationInLongitude(JD);
        double NutationInObliquity = CAANutation.NutationInObliquity(JD);

        e0   += NutationInObliquity / 3600;
        e0rad = CT.D2R(e0);

        //Step 16
        alpha   += 0.005693 * (Math.Cos(alpharad) * Math.Cos(l0rad) * Math.Cos(e0rad) + Math.Sin(alpharad) * Math.Sin(l0rad)) / Math.Cos(deltarad);
        alpha    = CT.M360(alpha);
        alpharad = CT.D2R(alpha);
        delta   += 0.005693 * (Math.Cos(l0rad) * Math.Cos(e0rad) * (Math.Tan(e0rad) * Math.Cos(deltarad) - Math.Sin(alpharad) * Math.Sin(deltarad)) + Math.Cos(alpharad) * Math.Sin(deltarad) * Math.Sin(l0rad));
        deltarad = CT.D2R(delta);

        //Step 17
        double NutationRA   = CAANutation.NutationInRightAscension(alpha / 15, delta, e0, NutationInLongitude, NutationInObliquity);
        double alphadash    = alpha + NutationRA / 3600;
        double alphadashrad = CT.D2R(alphadash);
        double NutationDec  = CAANutation.NutationInDeclination(alpha / 15, delta, e0, NutationInLongitude, NutationInObliquity);
        double deltadash    = delta + NutationDec / 3600;
        double deltadashrad = CT.D2R(deltadash);

        NutationRA = CAANutation.NutationInRightAscension(alpha0 / 15, delta0, e0, NutationInLongitude, NutationInObliquity);
        double alpha0dash    = alpha0 + NutationRA / 3600;
        double alpha0dashrad = CT.D2R(alpha0dash);

        NutationDec = CAANutation.NutationInDeclination(alpha0 / 15, delta0, e0, NutationInLongitude, NutationInObliquity);
        double delta0dash    = delta0 + NutationDec / 3600;
        double delta0dashrad = CT.D2R(delta0dash);

        //Step 18
        details.P = CT.M360(CT.R2D(Math.Atan2(Math.Cos(delta0dashrad) * Math.Sin(alpha0dashrad - alphadashrad), Math.Sin(delta0dashrad) * Math.Cos(deltadashrad) - Math.Cos(delta0dashrad) * Math.Sin(deltadashrad) * Math.Cos(alpha0dashrad - alphadashrad))));

        return(details);
    }
Exemple #2
0
//Static methods
    public static CAAGalileanMoonsDetails Calculate(double JD)
    {
        //Calculate the position of the Sun
        double sunlong    = CAASun.GeometricEclipticLongitude(JD);
        double sunlongrad = CAACoordinateTransformation.DegreesToRadians(sunlong);
        double beta       = CAASun.GeometricEclipticLatitude(JD);
        double betarad    = CAACoordinateTransformation.DegreesToRadians(beta);
        double R          = CAAEarth.RadiusVector(JD);

        //Calculate the the light travel time from Jupiter to the Earth
        double DELTA = 5;
        double PreviousEarthLightTravelTime = 0;
        double EarthLightTravelTime         = CAAElliptical.DistanceToLightTime(DELTA);
        double JD1      = JD - EarthLightTravelTime;
        bool   bIterate = true;
        double x        = 0;
        double y        = 0;
        double z        = 0;

        double l    = 0;
        double lrad = 0;
        double b    = 0;
        double brad = 0;
        double r    = 0;

        while (bIterate)
        {
            //Calculate the position of Jupiter
            l    = CAAJupiter.EclipticLongitude(JD1);
            lrad = CAACoordinateTransformation.DegreesToRadians(l);
            b    = CAAJupiter.EclipticLatitude(JD1);
            brad = CAACoordinateTransformation.DegreesToRadians(b);
            r    = CAAJupiter.RadiusVector(JD1);

            x     = r * Math.Cos(brad) * Math.Cos(lrad) + R * Math.Cos(sunlongrad);
            y     = r * Math.Cos(brad) * Math.Sin(lrad) + R * Math.Sin(sunlongrad);
            z     = r * Math.Sin(brad) + R * Math.Sin(betarad);
            DELTA = Math.Sqrt(x * x + y * y + z * z);
            EarthLightTravelTime = CAAElliptical.DistanceToLightTime(DELTA);

            //Prepare for the next loop around
            bIterate = (Math.Abs(EarthLightTravelTime - PreviousEarthLightTravelTime) > 2E-6); //2E-6 corresponds to 0.17 of a second
            if (bIterate)
            {
                JD1 = JD - EarthLightTravelTime;
                PreviousEarthLightTravelTime = EarthLightTravelTime;
            }
        }

        //Calculate the details as seen from the earth
        CAAGalileanMoonsDetails details1 = CalculateHelper(JD, sunlongrad, betarad, R);

        FillInPhenomenaDetails(ref details1.Satellite1);
        FillInPhenomenaDetails(ref details1.Satellite2);
        FillInPhenomenaDetails(ref details1.Satellite3);
        FillInPhenomenaDetails(ref details1.Satellite4);

        //Calculate the the light travel time from Jupiter to the Sun
        JD1   = JD - EarthLightTravelTime;
        l     = CAAJupiter.EclipticLongitude(JD1);
        lrad  = CAACoordinateTransformation.DegreesToRadians(l);
        b     = CAAJupiter.EclipticLatitude(JD1);
        brad  = CAACoordinateTransformation.DegreesToRadians(b);
        r     = CAAJupiter.RadiusVector(JD1);
        x     = r * Math.Cos(brad) * Math.Cos(lrad);
        y     = r * Math.Cos(brad) * Math.Sin(lrad);
        z     = r * Math.Sin(brad);
        DELTA = Math.Sqrt(x * x + y * y + z * z);
        double SunLightTravelTime = CAAElliptical.DistanceToLightTime(DELTA);

        //Calculate the details as seen from the Sun
        CAAGalileanMoonsDetails details2 = CalculateHelper(JD + SunLightTravelTime - EarthLightTravelTime, sunlongrad, betarad, 0);

        FillInPhenomenaDetails(ref details2.Satellite1);
        FillInPhenomenaDetails(ref details2.Satellite2);
        FillInPhenomenaDetails(ref details2.Satellite3);
        FillInPhenomenaDetails(ref details2.Satellite4);

        //Finally transfer the required values from details2 to details1
        details1.Satellite1.bInEclipse       = details2.Satellite1.bInOccultation;
        details1.Satellite2.bInEclipse       = details2.Satellite2.bInOccultation;
        details1.Satellite3.bInEclipse       = details2.Satellite3.bInOccultation;
        details1.Satellite4.bInEclipse       = details2.Satellite4.bInOccultation;
        details1.Satellite1.bInShadowTransit = details2.Satellite1.bInTransit;
        details1.Satellite2.bInShadowTransit = details2.Satellite2.bInTransit;
        details1.Satellite3.bInShadowTransit = details2.Satellite3.bInTransit;
        details1.Satellite4.bInShadowTransit = details2.Satellite4.bInTransit;
//C++ TO C# CONVERTER WARNING: The following line was determined to be a copy assignment (rather than a reference assignment) - this should be verified and a 'CopyFrom' method should be created if it does not yet exist:
//ORIGINAL LINE: details1.Satellite1.ApparentShadowRectangularCoordinates = details2.Satellite1.ApparentRectangularCoordinates;
        details1.Satellite1.ApparentShadowRectangularCoordinates = details2.Satellite1.ApparentRectangularCoordinates;
//C++ TO C# CONVERTER WARNING: The following line was determined to be a copy assignment (rather than a reference assignment) - this should be verified and a 'CopyFrom' method should be created if it does not yet exist:
//ORIGINAL LINE: details1.Satellite2.ApparentShadowRectangularCoordinates = details2.Satellite2.ApparentRectangularCoordinates;
        details1.Satellite2.ApparentShadowRectangularCoordinates = details2.Satellite2.ApparentRectangularCoordinates;
//C++ TO C# CONVERTER WARNING: The following line was determined to be a copy assignment (rather than a reference assignment) - this should be verified and a 'CopyFrom' method should be created if it does not yet exist:
//ORIGINAL LINE: details1.Satellite3.ApparentShadowRectangularCoordinates = details2.Satellite3.ApparentRectangularCoordinates;
        details1.Satellite3.ApparentShadowRectangularCoordinates = details2.Satellite3.ApparentRectangularCoordinates;
//C++ TO C# CONVERTER WARNING: The following line was determined to be a copy assignment (rather than a reference assignment) - this should be verified and a 'CopyFrom' method should be created if it does not yet exist:
//ORIGINAL LINE: details1.Satellite4.ApparentShadowRectangularCoordinates = details2.Satellite4.ApparentRectangularCoordinates;
        details1.Satellite4.ApparentShadowRectangularCoordinates = details2.Satellite4.ApparentRectangularCoordinates;
        return(details1);
    }
    public static EPD Calculate(double JD, EO @object)
    {
        //What will the the return value
        EPD details = new EPD();

        double JD0   = JD;
        double L0    = 0;
        double B0    = 0;
        double R0    = 0;
        double cosB0 = 0;

        if (@object != EO.SUN)
        {
            L0    = CAAEarth.EclipticLongitude(JD0);
            B0    = CAAEarth.EclipticLatitude(JD0);
            R0    = CAAEarth.RadiusVector(JD0);
            L0    = CT.D2R(L0);
            B0    = CT.D2R(B0);
            cosB0 = Math.Cos(B0);
        }


        //Calculate the initial values
        double L = 0;
        double B = 0;
        double R = 0;

        double Lrad;
        double Brad;
        double cosB;
        double cosL;
        double x;
        double y;
        double z;
        bool   bRecalc      = true;
        bool   bFirstRecalc = true;
        double LPrevious    = 0;
        double BPrevious    = 0;
        double RPrevious    = 0;

        while (bRecalc)
        {
            switch (@object)
            {
            case EO.SUN:
            {
                L = CAASun.GeometricEclipticLongitude(JD0);
                B = CAASun.GeometricEclipticLatitude(JD0);
                R = CAAEarth.RadiusVector(JD0);
                break;
            }

            case EO.MERCURY:
            {
                L = CAAMercury.EclipticLongitude(JD0);
                B = CAAMercury.EclipticLatitude(JD0);
                R = CAAMercury.RadiusVector(JD0);
                break;
            }

            case EO.VENUS:
            {
                L = CAAVenus.EclipticLongitude(JD0);
                B = CAAVenus.EclipticLatitude(JD0);
                R = CAAVenus.RadiusVector(JD0);
                break;
            }

            case EO.MARS:
            {
                L = CAAMars.EclipticLongitude(JD0);
                B = CAAMars.EclipticLatitude(JD0);
                R = CAAMars.RadiusVector(JD0);
                break;
            }

            case EO.JUPITER:
            {
                L = CAAJupiter.EclipticLongitude(JD0);
                B = CAAJupiter.EclipticLatitude(JD0);
                R = CAAJupiter.RadiusVector(JD0);
                break;
            }

            case EO.SATURN:
            {
                L = CAASaturn.EclipticLongitude(JD0);
                B = CAASaturn.EclipticLatitude(JD0);
                R = CAASaturn.RadiusVector(JD0);
                break;
            }

            case EO.URANUS:
            {
                L = CAAUranus.EclipticLongitude(JD0);
                B = CAAUranus.EclipticLatitude(JD0);
                R = CAAUranus.RadiusVector(JD0);
                break;
            }

            case EO.NEPTUNE:
            {
                L = CAANeptune.EclipticLongitude(JD0);
                B = CAANeptune.EclipticLatitude(JD0);
                R = CAANeptune.RadiusVector(JD0);
                break;
            }

            case EO.PLUTO:
            {
                L = CAAPluto.EclipticLongitude(JD0);
                B = CAAPluto.EclipticLatitude(JD0);
                R = CAAPluto.RadiusVector(JD0);
                break;
            }

            default:
            {
                Debug.Assert(false);
                break;
            }
            }

            if (!bFirstRecalc)
            {
                bRecalc   = ((Math.Abs(L - LPrevious) > 0.00001) || (Math.Abs(B - BPrevious) > 0.00001) || (Math.Abs(R - RPrevious) > 0.000001));
                LPrevious = L;
                BPrevious = B;
                RPrevious = R;
            }
            else
            {
                bFirstRecalc = false;
            }



            //Calculate the new value
            if (bRecalc)
            {
                double distance = 0;
                if (@object != EO.SUN)
                {
                    Lrad     = CT.D2R(L);
                    Brad     = CT.D2R(B);
                    cosB     = Math.Cos(Brad);
                    cosL     = Math.Cos(Lrad);
                    x        = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0);
                    y        = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0);
                    z        = R * Math.Sin(Brad) - R0 * Math.Sin(B0);
                    distance = Math.Sqrt(x * x + y * y + z * z);
                }
                else
                {
                    distance = R; //Distance to the sun from the earth is in fact the radius vector
                }
                //Prepare for the next loop around
                JD0 = JD - ELL.DistanceToLightTime(distance);
            }
        }

        Lrad = CT.D2R(L);
        Brad = CT.D2R(B);
        cosB = Math.Cos(Brad);
        cosL = Math.Cos(Lrad);
        x    = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0);
        y    = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0);
        z    = R * Math.Sin(Brad) - R0 * Math.Sin(B0);
        double x2 = x * x;
        double y2 = y * y;

        details.ApparentGeocentricLatitude  = CT.R2D(Math.Atan2(z, Math.Sqrt(x2 + y2)));
        details.ApparentGeocentricDistance  = Math.Sqrt(x2 + y2 + z * z);
        details.ApparentGeocentricLongitude = CT.M360(CT.R2D(Math.Atan2(y, x)));
        details.ApparentLightTime           = ELL.DistanceToLightTime(details.ApparentGeocentricDistance);

        //Adjust for Aberration
        COR Aberration = ABR.EclipticAberration(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD);

        details.ApparentGeocentricLongitude += Aberration.X;
        details.ApparentGeocentricLatitude  += Aberration.Y;

        //convert to the FK5 system
        double DeltaLong = CAAFK5.CorrectionInLongitude(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD);

        details.ApparentGeocentricLatitude  += CAAFK5.CorrectionInLatitude(details.ApparentGeocentricLongitude, JD);
        details.ApparentGeocentricLongitude += DeltaLong;

        //Correct for nutation
        double NutationInLongitude = CAANutation.NutationInLongitude(JD);
        double Epsilon             = CAANutation.TrueObliquityOfEcliptic(JD);

        details.ApparentGeocentricLongitude += CT.DMS2D(0, 0, NutationInLongitude);

        //Convert to RA and Dec
        COR ApparentEqu = CT.Ec2Eq(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, Epsilon);

        details.ApparentGeocentricRA          = ApparentEqu.X;
        details.ApparentGeocentricDeclination = ApparentEqu.Y;

        return(details);
    }
Exemple #4
0
    //////////////////////////////// Implementation ///////////////////////////////

    protected static CAAGalileanMoonsDetails CalculateHelper(double JD, double sunlongrad, double betarad, double R)
    {
        //What will be the return value
        CAAGalileanMoonsDetails details = new CAAGalileanMoonsDetails();

        //Calculate the position of Jupiter decreased by the light travel time from Jupiter to the specified position
        double DELTA = 5;
        double PreviousLightTravelTime = 0;
        double LightTravelTime         = CAAElliptical.DistanceToLightTime(DELTA);
        double x        = 0;
        double y        = 0;
        double z        = 0;
        double l        = 0;
        double lrad     = 0;
        double b        = 0;
        double brad     = 0;
        double r        = 0;
        double JD1      = JD - LightTravelTime;
        bool   bIterate = true;

        while (bIterate)
        {
            //Calculate the position of Jupiter
            l    = CAAJupiter.EclipticLongitude(JD1);
            lrad = CAACoordinateTransformation.DegreesToRadians(l);
            b    = CAAJupiter.EclipticLatitude(JD1);
            brad = CAACoordinateTransformation.DegreesToRadians(b);
            r    = CAAJupiter.RadiusVector(JD1);

            x               = r * Math.Cos(brad) * Math.Cos(lrad) + R * Math.Cos(sunlongrad);
            y               = r * Math.Cos(brad) * Math.Sin(lrad) + R * Math.Sin(sunlongrad);
            z               = r * Math.Sin(brad) + R * Math.Sin(betarad);
            DELTA           = Math.Sqrt(x * x + y * y + z * z);
            LightTravelTime = CAAElliptical.DistanceToLightTime(DELTA);

            //Prepare for the next loop around
            bIterate = (Math.Abs(LightTravelTime - PreviousLightTravelTime) > 2E-6); //2E-6 corresponds to 0.17 of a second
            if (bIterate)
            {
                JD1 = JD - LightTravelTime;
                PreviousLightTravelTime = LightTravelTime;
            }
        }

        //Calculate Jupiter's Longitude and Latitude
        double lambda0 = Math.Atan2(y, x);
        double beta0   = Math.Atan(z / Math.Sqrt(x * x + y * y));

        double t = JD - 2443000.5 - LightTravelTime;

        //Calculate the mean longitudes
        double l1    = 106.07719 + 203.488955790 * t;
        double l1rad = CAACoordinateTransformation.DegreesToRadians(l1);
        double l2    = 175.73161 + 101.374724735 * t;
        double l2rad = CAACoordinateTransformation.DegreesToRadians(l2);
        double l3    = 120.55883 + 50.317609207 * t;
        double l3rad = CAACoordinateTransformation.DegreesToRadians(l3);
        double l4    = 84.44459 + 21.571071177 * t;
        double l4rad = CAACoordinateTransformation.DegreesToRadians(l4);

        //Calculate the perijoves
        double pi1 = CAACoordinateTransformation.DegreesToRadians(CAACoordinateTransformation.MapTo0To360Range(97.0881 + 0.16138586 * t));
        double pi2 = CAACoordinateTransformation.DegreesToRadians(CAACoordinateTransformation.MapTo0To360Range(154.8663 + 0.04726307 * t));
        double pi3 = CAACoordinateTransformation.DegreesToRadians(CAACoordinateTransformation.MapTo0To360Range(188.1840 + 0.00712734 * t));
        double pi4 = CAACoordinateTransformation.DegreesToRadians(CAACoordinateTransformation.MapTo0To360Range(335.2868 + 0.00184000 * t));

        //Calculate the nodes on the equatorial plane of jupiter
        double w1    = 312.3346 - 0.13279386 * t;
        double w1rad = CAACoordinateTransformation.DegreesToRadians(w1);
        double w2    = 100.4411 - 0.03263064 * t;
        double w2rad = CAACoordinateTransformation.DegreesToRadians(w2);
        double w3    = 119.1942 - 0.00717703 * t;
        double w3rad = CAACoordinateTransformation.DegreesToRadians(w3);
        double w4    = 322.6186 - 0.00175934 * t;
        double w4rad = CAACoordinateTransformation.DegreesToRadians(w4);

        //Calculate the Principal inequality in the longitude of Jupiter
        double GAMMA = 0.33033 * Math.Sin(CAACoordinateTransformation.DegreesToRadians(163.679 + 0.0010512 * t)) + 0.03439 * Math.Sin(CAACoordinateTransformation.DegreesToRadians(34.486 - 0.0161731 * t));

        //Calculate the "phase of free libration"
        double philambda = CAACoordinateTransformation.DegreesToRadians(199.6766 + 0.17379190 * t);

        //Calculate the longitude of the node of the equator of Jupiter on the ecliptic
        double psi = CAACoordinateTransformation.DegreesToRadians(316.5182 - 0.00000208 * t);

        //Calculate the mean anomalies of Jupiter and Saturn
        double G     = CAACoordinateTransformation.DegreesToRadians(30.23756 + 0.0830925701 * t + GAMMA);
        double Gdash = CAACoordinateTransformation.DegreesToRadians(31.97853 + 0.0334597339 * t);

        //Calculate the longitude of the perihelion of Jupiter
        double PI = CAACoordinateTransformation.DegreesToRadians(13.469942);

        //Calculate the periodic terms in the longitudes of the satellites
        double Sigma1 = 0.47259 * Math.Sin(2 * (l1rad - l2rad)) + -0.03478 * Math.Sin(pi3 - pi4) + 0.01081 * Math.Sin(l2rad - 2 * l3rad + pi3) + 0.00738 * Math.Sin(philambda) + 0.00713 * Math.Sin(l2rad - 2 * l3rad + pi2) + -0.00674 * Math.Sin(pi1 + pi3 - 2 * PI - 2 * G) + 0.00666 * Math.Sin(l2rad - 2 * l3rad + pi4) + 0.00445 * Math.Sin(l1rad - pi3) + -0.00354 * Math.Sin(l1rad - l2rad) + -0.00317 * Math.Sin(2 * psi - 2 * PI) + 0.00265 * Math.Sin(l1rad - pi4) + -0.00186 * Math.Sin(G) + 0.00162 * Math.Sin(pi2 - pi3) + 0.00158 * Math.Sin(4 * (l1rad - l2rad)) + -0.00155 * Math.Sin(l1rad - l3rad) + -0.00138 * Math.Sin(psi + w3rad - 2 * PI - 2 * G) + -0.00115 * Math.Sin(2 * (l1rad - 2 * l2rad + w2rad)) + 0.00089 * Math.Sin(pi2 - pi4) + 0.00085 * Math.Sin(l1rad + pi3 - 2 * PI - 2 * G) + 0.00083 * Math.Sin(w2rad - w3rad) + 0.00053 * Math.Sin(psi - w2rad);

        double Sigma2 = 1.06476 * Math.Sin(2 * (l2rad - l3rad)) + 0.04256 * Math.Sin(l1rad - 2 * l2rad + pi3) + 0.03581 * Math.Sin(l2rad - pi3) + 0.02395 * Math.Sin(l1rad - 2 * l2rad + pi4) + 0.01984 * Math.Sin(l2rad - pi4) + -0.01778 * Math.Sin(philambda) + 0.01654 * Math.Sin(l2rad - pi2) + 0.01334 * Math.Sin(l2rad - 2 * l3rad + pi2) + 0.01294 * Math.Sin(pi3 - pi4) + -0.01142 * Math.Sin(l2rad - l3rad) + -0.01057 * Math.Sin(G) + -0.00775 * Math.Sin(2 * (psi - PI)) + 0.00524 * Math.Sin(2 * (l1rad - l2rad)) + -0.00460 * Math.Sin(l1rad - l3rad) + 0.00316 * Math.Sin(psi - 2 * G + w3rad - 2 * PI) + -0.00203 * Math.Sin(pi1 + pi3 - 2 * PI - 2 * G) + 0.00146 * Math.Sin(psi - w3rad) + -0.00145 * Math.Sin(2 * G) + 0.00125 * Math.Sin(psi - w4rad) + -0.00115 * Math.Sin(l1rad - 2 * l3rad + pi3) + -0.00094 * Math.Sin(2 * (l2rad - w2rad)) + 0.00086 * Math.Sin(2 * (l1rad - 2 * l2rad + w2rad)) + -0.00086 * Math.Sin(5 * Gdash - 2 * G + CAACoordinateTransformation.DegreesToRadians(52.225)) + -0.00078 * Math.Sin(l2rad - l4rad) + -0.00064 * Math.Sin(3 * l3rad - 7 * l4rad + 4 * pi4) + 0.00064 * Math.Sin(pi1 - pi4) + -0.00063 * Math.Sin(l1rad - 2 * l3rad + pi4) + 0.00058 * Math.Sin(w3rad - w4rad) + 0.00056 * Math.Sin(2 * (psi - PI - G)) + 0.00056 * Math.Sin(2 * (l2rad - l4rad)) + 0.00055 * Math.Sin(2 * (l1rad - l3rad)) + 0.00052 * Math.Sin(3 * l3rad - 7 * l4rad + pi3 + 3 * pi4) + -0.00043 * Math.Sin(l1rad - pi3) + 0.00041 * Math.Sin(5 * (l2rad - l3rad)) + 0.00041 * Math.Sin(pi4 - PI) + 0.00032 * Math.Sin(w2rad - w3rad) + 0.00032 * Math.Sin(2 * (l3rad - G - PI));

        double Sigma3 = 0.16490 * Math.Sin(l3rad - pi3) + 0.09081 * Math.Sin(l3rad - pi4) + -0.06907 * Math.Sin(l2rad - l3rad) + 0.03784 * Math.Sin(pi3 - pi4) + 0.01846 * Math.Sin(2 * (l3rad - l4rad)) + -0.01340 * Math.Sin(G) + -0.01014 * Math.Sin(2 * (psi - PI)) + 0.00704 * Math.Sin(l2rad - 2 * l3rad + pi3) + -0.00620 * Math.Sin(l2rad - 2 * l3rad + pi2) + -0.00541 * Math.Sin(l3rad - l4rad) + 0.00381 * Math.Sin(l2rad - 2 * l3rad + pi4) + 0.00235 * Math.Sin(psi - w3rad) + 0.00198 * Math.Sin(psi - w4rad) + 0.00176 * Math.Sin(philambda) + 0.00130 * Math.Sin(3 * (l3rad - l4rad)) + 0.00125 * Math.Sin(l1rad - l3rad) + -0.00119 * Math.Sin(5 * Gdash - 2 * G + CAACoordinateTransformation.DegreesToRadians(52.225)) + 0.00109 * Math.Sin(l1rad - l2rad) + -0.00100 * Math.Sin(3 * l3rad - 7 * l4rad + 4 * pi4) + 0.00091 * Math.Sin(w3rad - w4rad) + 0.00080 * Math.Sin(3 * l3rad - 7 * l4rad + pi3 + 3 * pi4) + -0.00075 * Math.Sin(2 * l2rad - 3 * l3rad + pi3) + 0.00072 * Math.Sin(pi1 + pi3 - 2 * PI - 2 * G) + 0.00069 * Math.Sin(pi4 - PI) + -0.00058 * Math.Sin(2 * l3rad - 3 * l4rad + pi4) + -0.00057 * Math.Sin(l3rad - 2 * l4rad + pi4) + 0.00056 * Math.Sin(l3rad + pi3 - 2 * PI - 2 * G) + -0.00052 * Math.Sin(l2rad - 2 * l3rad + pi1) + -0.00050 * Math.Sin(pi2 - pi3) + 0.00048 * Math.Sin(l3rad - 2 * l4rad + pi3) + -0.00045 * Math.Sin(2 * l2rad - 3 * l3rad + pi4) + -0.00041 * Math.Sin(pi2 - pi4) + -0.00038 * Math.Sin(2 * G) + -0.00037 * Math.Sin(pi3 - pi4 + w3rad - w4rad) + -0.00032 * Math.Sin(3 * l3rad - 7 * l4rad + 2 * pi3 + 2 * pi4) + 0.00030 * Math.Sin(4 * (l3rad - l4rad)) + 0.00029 * Math.Sin(l3rad + pi4 - 2 * PI - 2 * G) + -0.00028 * Math.Sin(w3rad + psi - 2 * PI - 2 * G) + 0.00026 * Math.Sin(l3rad - PI - G) + 0.00024 * Math.Sin(l2rad - 3 * l3rad + 2 * l4rad) + 0.00021 * Math.Sin(l3rad - PI - G) + -0.00021 * Math.Sin(l3rad - pi2) + 0.00017 * Math.Sin(2 * (l3rad - pi3));

        double Sigma4 = 0.84287 * Math.Sin(l4rad - pi4) + 0.03431 * Math.Sin(pi4 - pi3) + -0.03305 * Math.Sin(2 * (psi - PI)) + -0.03211 * Math.Sin(G) + -0.01862 * Math.Sin(l4rad - pi3) + 0.01186 * Math.Sin(psi - w4rad) + 0.00623 * Math.Sin(l4rad + pi4 - 2 * G - 2 * PI) + 0.00387 * Math.Sin(2 * (l4rad - pi4)) + -0.00284 * Math.Sin(5 * Gdash - 2 * G + CAACoordinateTransformation.DegreesToRadians(52.225)) + -0.00234 * Math.Sin(2 * (psi - pi4)) + -0.00223 * Math.Sin(l3rad - l4rad) + -0.00208 * Math.Sin(l4rad - PI) + 0.00178 * Math.Sin(psi + w4rad - 2 * pi4) + 0.00134 * Math.Sin(pi4 - PI) + 0.00125 * Math.Sin(2 * (l4rad - G - PI)) + -0.00117 * Math.Sin(2 * G) + -0.00112 * Math.Sin(2 * (l3rad - l4rad)) + 0.00107 * Math.Sin(3 * l3rad - 7 * l4rad + 4 * pi4) + 0.00102 * Math.Sin(l4rad - G - PI) + 0.00096 * Math.Sin(2 * l4rad - psi - w4rad) + 0.00087 * Math.Sin(2 * (psi - w4rad)) + -0.00085 * Math.Sin(3 * l3rad - 7 * l4rad + pi3 + 3 * pi4) + 0.00085 * Math.Sin(l3rad - 2 * l4rad + pi4) + -0.00081 * Math.Sin(2 * (l4rad - psi)) + 0.00071 * Math.Sin(l4rad + pi4 - 2 * PI - 3 * G) + 0.00061 * Math.Sin(l1rad - l4rad) + -0.00056 * Math.Sin(psi - w3rad) + -0.00054 * Math.Sin(l3rad - 2 * l4rad + pi3) + 0.00051 * Math.Sin(l2rad - l4rad) + 0.00042 * Math.Sin(2 * (psi - G - PI)) + 0.00039 * Math.Sin(2 * (pi4 - w4rad)) + 0.00036 * Math.Sin(psi + PI - pi4 - w4rad) + 0.00035 * Math.Sin(2 * Gdash - G + CAACoordinateTransformation.DegreesToRadians(188.37)) + -0.00035 * Math.Sin(l4rad - pi4 + 2 * PI - 2 * psi) + -0.00032 * Math.Sin(l4rad + pi4 - 2 * PI - G) + 0.00030 * Math.Sin(2 * Gdash - 2 * G + CAACoordinateTransformation.DegreesToRadians(149.15)) + 0.00029 * Math.Sin(3 * l3rad - 7 * l4rad + 2 * pi3 + 2 * pi4) + 0.00028 * Math.Sin(l4rad - pi4 + 2 * psi - 2 * PI) + -0.00028 * Math.Sin(2 * (l4rad - w4rad)) + -0.00027 * Math.Sin(pi3 - pi4 + w3rad - w4rad) + -0.00026 * Math.Sin(5 * Gdash - 3 * G + CAACoordinateTransformation.DegreesToRadians(188.37)) + 0.00025 * Math.Sin(w4rad - w3rad) + -0.00025 * Math.Sin(l2rad - 3 * l3rad + 2 * l4rad) + -0.00023 * Math.Sin(3 * (l3rad - l4rad)) + 0.00021 * Math.Sin(2 * l4rad - 2 * PI - 3 * G) + -0.00021 * Math.Sin(2 * l3rad - 3 * l4rad + pi4) + 0.00019 * Math.Sin(l4rad - pi4 - G) + -0.00019 * Math.Sin(2 * l4rad - pi3 - pi4) + -0.00018 * Math.Sin(l4rad - pi4 + G) + -0.00016 * Math.Sin(l4rad + pi3 - 2 * PI - 2 * G);

        details.Satellite1.MeanLongitude = CAACoordinateTransformation.MapTo0To360Range(l1);
        details.Satellite1.TrueLongitude = CAACoordinateTransformation.MapTo0To360Range(l1 + Sigma1);
        double L1 = CAACoordinateTransformation.DegreesToRadians(details.Satellite1.TrueLongitude);

        details.Satellite2.MeanLongitude = CAACoordinateTransformation.MapTo0To360Range(l2);
        details.Satellite2.TrueLongitude = CAACoordinateTransformation.MapTo0To360Range(l2 + Sigma2);
        double L2 = CAACoordinateTransformation.DegreesToRadians(details.Satellite2.TrueLongitude);

        details.Satellite3.MeanLongitude = CAACoordinateTransformation.MapTo0To360Range(l3);
        details.Satellite3.TrueLongitude = CAACoordinateTransformation.MapTo0To360Range(l3 + Sigma3);
        double L3 = CAACoordinateTransformation.DegreesToRadians(details.Satellite3.TrueLongitude);

        details.Satellite4.MeanLongitude = CAACoordinateTransformation.MapTo0To360Range(l4);
        details.Satellite4.TrueLongitude = CAACoordinateTransformation.MapTo0To360Range(l4 + Sigma4);
        double L4 = CAACoordinateTransformation.DegreesToRadians(details.Satellite4.TrueLongitude);

        //Calculate the periodic terms in the latitudes of the satellites
        double B1 = Math.Atan(0.0006393 * Math.Sin(L1 - w1rad) + 0.0001825 * Math.Sin(L1 - w2rad) + 0.0000329 * Math.Sin(L1 - w3rad) + -0.0000311 * Math.Sin(L1 - psi) + 0.0000093 * Math.Sin(L1 - w4rad) + 0.0000075 * Math.Sin(3 * L1 - 4 * l2rad - 1.9927 * Sigma1 + w2rad) + 0.0000046 * Math.Sin(L1 + psi - 2 * PI - 2 * G));

        details.Satellite1.EquatorialLatitude = CAACoordinateTransformation.RadiansToDegrees(B1);

        double B2 = Math.Atan(0.0081004 * Math.Sin(L2 - w2rad) + 0.0004512 * Math.Sin(L2 - w3rad) + -0.0003284 * Math.Sin(L2 - psi) + 0.0001160 * Math.Sin(L2 - w4rad) + 0.0000272 * Math.Sin(l1rad - 2 * l3rad + 1.0146 * Sigma2 + w2rad) + -0.0000144 * Math.Sin(L2 - w1rad) + 0.0000143 * Math.Sin(L2 + psi - 2 * PI - 2 * G) + 0.0000035 * Math.Sin(L2 - psi + G) + -0.0000028 * Math.Sin(l1rad - 2 * l3rad + 1.0146 * Sigma2 + w3rad));

        details.Satellite2.EquatorialLatitude = CAACoordinateTransformation.RadiansToDegrees(B2);

        double B3 = Math.Atan(0.0032402 * Math.Sin(L3 - w3rad) + -0.0016911 * Math.Sin(L3 - psi) + 0.0006847 * Math.Sin(L3 - w4rad) + -0.0002797 * Math.Sin(L3 - w2rad) + 0.0000321 * Math.Sin(L3 + psi - 2 * PI - 2 * G) + 0.0000051 * Math.Sin(L3 - psi + G) + -0.0000045 * Math.Sin(L3 - psi - G) + -0.0000045 * Math.Sin(L3 + psi - 2 * PI) + 0.0000037 * Math.Sin(L3 + psi - 2 * PI - 3 * G) + 0.0000030 * Math.Sin(2 * l2rad - 3 * L3 + 4.03 * Sigma3 + w2rad) + -0.0000021 * Math.Sin(2 * l2rad - 3 * L3 + 4.03 * Sigma3 + w3rad));

        details.Satellite3.EquatorialLatitude = CAACoordinateTransformation.RadiansToDegrees(B3);

        double B4 = Math.Atan(-0.0076579 * Math.Sin(L4 - psi) + 0.0044134 * Math.Sin(L4 - w4rad) + -0.0005112 * Math.Sin(L4 - w3rad) + 0.0000773 * Math.Sin(L4 + psi - 2 * PI - 2 * G) + 0.0000104 * Math.Sin(L4 - psi + G) + -0.0000102 * Math.Sin(L4 - psi - G) + 0.0000088 * Math.Sin(L4 + psi - 2 * PI - 3 * G) + -0.0000038 * Math.Sin(L4 + psi - 2 * PI - G));

        details.Satellite4.EquatorialLatitude = CAACoordinateTransformation.RadiansToDegrees(B4);

        //Calculate the periodic terms for the radius vector
        details.Satellite1.r = 5.90569 * (1 + (-0.0041339 * Math.Cos(2 * (l1rad - l2rad)) + -0.0000387 * Math.Cos(l1rad - pi3) + -0.0000214 * Math.Cos(l1rad - pi4) + 0.0000170 * Math.Cos(l1rad - l2rad) + -0.0000131 * Math.Cos(4 * (l1rad - l2rad)) + 0.0000106 * Math.Cos(l1rad - l3rad) + -0.0000066 * Math.Cos(l1rad + pi3 - 2 * PI - 2 * G)));

        details.Satellite2.r = 9.39657 * (1 + (0.0093848 * Math.Cos(l1rad - l2rad) + -0.0003116 * Math.Cos(l2rad - pi3) + -0.0001744 * Math.Cos(l2rad - pi4) + -0.0001442 * Math.Cos(l2rad - pi2) + 0.0000553 * Math.Cos(l2rad - l3rad) + 0.0000523 * Math.Cos(l1rad - l3rad) + -0.0000290 * Math.Cos(2 * (l1rad - l2rad)) + 0.0000164 * Math.Cos(2 * (l2rad - w2rad)) + 0.0000107 * Math.Cos(l1rad - 2 * l3rad + pi3) + -0.0000102 * Math.Cos(l2rad - pi1) + -0.0000091 * Math.Cos(2 * (l1rad - l3rad))));

        details.Satellite3.r = 14.98832 * (1 + (-0.0014388 * Math.Cos(l3rad - pi3) + -0.0007919 * Math.Cos(l3rad - pi4) + 0.0006342 * Math.Cos(l2rad - l3rad) + -0.0001761 * Math.Cos(2 * (l3rad - l4rad)) + 0.0000294 * Math.Cos(l3rad - l4rad) + -0.0000156 * Math.Cos(3 * (l3rad - l4rad)) + 0.0000156 * Math.Cos(l1rad - l3rad) + -0.0000153 * Math.Cos(l1rad - l2rad) + 0.0000070 * Math.Cos(2 * l2rad - 3 * l3rad + pi3) + -0.0000051 * Math.Cos(l3rad + pi3 - 2 * PI - 2 * G)));

        details.Satellite4.r = 26.36273 * (1 + (-0.0073546 * Math.Cos(l4rad - pi4) + 0.0001621 * Math.Cos(l4rad - pi3) + 0.0000974 * Math.Cos(l3rad - l4rad) + -0.0000543 * Math.Cos(l4rad + pi4 - 2 * PI - 2 * G) + -0.0000271 * Math.Cos(2 * (l4rad - pi4)) + 0.0000182 * Math.Cos(l4rad - PI) + 0.0000177 * Math.Cos(2 * (l3rad - l4rad)) + -0.0000167 * Math.Cos(2 * l4rad - psi - w4rad) + 0.0000167 * Math.Cos(psi - w4rad) + -0.0000155 * Math.Cos(2 * (l4rad - PI - G)) + 0.0000142 * Math.Cos(2 * (l4rad - psi)) + 0.0000105 * Math.Cos(l1rad - l4rad) + 0.0000092 * Math.Cos(l2rad - l4rad) + -0.0000089 * Math.Cos(l4rad - PI - G) + -0.0000062 * Math.Cos(l4rad + pi4 - 2 * PI - 3 * G) + 0.0000048 * Math.Cos(2 * (l4rad - w4rad))));



        //Calculate T0
        double T0 = (JD - 2433282.423) / 36525;

        //Calculate the precession in longitude from Epoch B1950 to the date
        double P = CAACoordinateTransformation.DegreesToRadians(1.3966626 * T0 + 0.0003088 * T0 * T0);

        //Add it to L1 - L4 and psi
        L1 += P;
        details.Satellite1.TropicalLongitude = CAACoordinateTransformation.MapTo0To360Range(CAACoordinateTransformation.RadiansToDegrees(L1));
        L2 += P;
        details.Satellite2.TropicalLongitude = CAACoordinateTransformation.MapTo0To360Range(CAACoordinateTransformation.RadiansToDegrees(L2));
        L3 += P;
        details.Satellite3.TropicalLongitude = CAACoordinateTransformation.MapTo0To360Range(CAACoordinateTransformation.RadiansToDegrees(L3));
        L4 += P;
        details.Satellite4.TropicalLongitude = CAACoordinateTransformation.MapTo0To360Range(CAACoordinateTransformation.RadiansToDegrees(L4));
        psi += P;

        //Calculate the inclination of Jupiter's axis of rotation on the orbital plane
        double T    = (JD - 2415020.5) / 36525;
        double I    = 3.120262 + 0.0006 * T;
        double Irad = CAACoordinateTransformation.DegreesToRadians(I);

        double X1 = details.Satellite1.r * Math.Cos(L1 - psi) * Math.Cos(B1);
        double X2 = details.Satellite2.r * Math.Cos(L2 - psi) * Math.Cos(B2);
        double X3 = details.Satellite3.r * Math.Cos(L3 - psi) * Math.Cos(B3);
        double X4 = details.Satellite4.r * Math.Cos(L4 - psi) * Math.Cos(B4);
        double X5 = 0;

        double Y1 = details.Satellite1.r * Math.Sin(L1 - psi) * Math.Cos(B1);
        double Y2 = details.Satellite2.r * Math.Sin(L2 - psi) * Math.Cos(B2);
        double Y3 = details.Satellite3.r * Math.Sin(L3 - psi) * Math.Cos(B3);
        double Y4 = details.Satellite4.r * Math.Sin(L4 - psi) * Math.Cos(B4);
        double Y5 = 0;

        double Z1 = details.Satellite1.r * Math.Sin(B1);
        double Z2 = details.Satellite2.r * Math.Sin(B2);
        double Z3 = details.Satellite3.r * Math.Sin(B3);
        double Z4 = details.Satellite4.r * Math.Sin(B4);
        double Z5 = 1;

        //Now do the rotations, first for the ficticious 5th satellite, so that we can calculate D
        double          omega = CAACoordinateTransformation.DegreesToRadians(CAAElementsPlanetaryOrbit.JupiterLongitudeAscendingNode(JD));
        double          i     = CAACoordinateTransformation.DegreesToRadians(CAAElementsPlanetaryOrbit.JupiterInclination(JD));
        double          A6    = 0;
        double          B6    = 0;
        double          C6    = 0;
        CAA3DCoordinate north = new CAA3DCoordinate();

        Rotations(X5, Y5, Z5, Irad, psi, i, omega, lambda0, beta0, ref A6, ref B6, ref C6, out north);
        double D = Math.Atan2(A6, C6);

        //Now calculate the values for satellite 1
        Rotations(X1, Y1, Z1, Irad, psi, i, omega, lambda0, beta0, ref A6, ref B6, ref C6, out details.Satellite1.EclipticRectangularCoordinates);
        details.Satellite1.TrueRectangularCoordinates.X = A6 * Math.Cos(D) - C6 * Math.Sin(D);
        details.Satellite1.TrueRectangularCoordinates.Y = A6 * Math.Sin(D) + C6 * Math.Cos(D);
        details.Satellite1.TrueRectangularCoordinates.Z = B6;

        //Now calculate the values for satellite 2
        Rotations(X2, Y2, Z2, Irad, psi, i, omega, lambda0, beta0, ref A6, ref B6, ref C6, out details.Satellite2.EclipticRectangularCoordinates);
        details.Satellite2.TrueRectangularCoordinates.X = A6 * Math.Cos(D) - C6 * Math.Sin(D);
        details.Satellite2.TrueRectangularCoordinates.Y = A6 * Math.Sin(D) + C6 * Math.Cos(D);
        details.Satellite2.TrueRectangularCoordinates.Z = B6;

        //Now calculate the values for satellite 3
        Rotations(X3, Y3, Z3, Irad, psi, i, omega, lambda0, beta0, ref A6, ref B6, ref C6, out details.Satellite3.EclipticRectangularCoordinates);
        details.Satellite3.TrueRectangularCoordinates.X = A6 * Math.Cos(D) - C6 * Math.Sin(D);
        details.Satellite3.TrueRectangularCoordinates.Y = A6 * Math.Sin(D) + C6 * Math.Cos(D);
        details.Satellite3.TrueRectangularCoordinates.Z = B6;

        //And finally for satellite 4
        Rotations(X4, Y4, Z4, Irad, psi, i, omega, lambda0, beta0, ref A6, ref B6, ref C6, out details.Satellite4.EclipticRectangularCoordinates);
        details.Satellite4.TrueRectangularCoordinates.X = A6 * Math.Cos(D) - C6 * Math.Sin(D);
        details.Satellite4.TrueRectangularCoordinates.Y = A6 * Math.Sin(D) + C6 * Math.Cos(D);
        details.Satellite4.TrueRectangularCoordinates.Z = B6;

        //apply the differential light-time correction
        details.Satellite1.ApparentRectangularCoordinates.X = details.Satellite1.TrueRectangularCoordinates.X + Math.Abs(details.Satellite1.TrueRectangularCoordinates.Z) / 17295 * Math.Sqrt(1 - (details.Satellite1.TrueRectangularCoordinates.X / details.Satellite1.r) * (details.Satellite1.TrueRectangularCoordinates.X / details.Satellite1.r));
        details.Satellite1.ApparentRectangularCoordinates.Y = details.Satellite1.TrueRectangularCoordinates.Y;
        details.Satellite1.ApparentRectangularCoordinates.Z = details.Satellite1.TrueRectangularCoordinates.Z;

        details.Satellite2.ApparentRectangularCoordinates.X = details.Satellite2.TrueRectangularCoordinates.X + Math.Abs(details.Satellite2.TrueRectangularCoordinates.Z) / 21819 * Math.Sqrt(1 - (details.Satellite2.TrueRectangularCoordinates.X / details.Satellite2.r) * (details.Satellite2.TrueRectangularCoordinates.X / details.Satellite2.r));
        details.Satellite2.ApparentRectangularCoordinates.Y = details.Satellite2.TrueRectangularCoordinates.Y;
        details.Satellite2.ApparentRectangularCoordinates.Z = details.Satellite2.TrueRectangularCoordinates.Z;

        details.Satellite3.ApparentRectangularCoordinates.X = details.Satellite3.TrueRectangularCoordinates.X + Math.Abs(details.Satellite3.TrueRectangularCoordinates.Z) / 27558 * Math.Sqrt(1 - (details.Satellite3.TrueRectangularCoordinates.X / details.Satellite3.r) * (details.Satellite3.TrueRectangularCoordinates.X / details.Satellite3.r));
        details.Satellite3.ApparentRectangularCoordinates.Y = details.Satellite3.TrueRectangularCoordinates.Y;
        details.Satellite3.ApparentRectangularCoordinates.Z = details.Satellite3.TrueRectangularCoordinates.Z;

        details.Satellite4.ApparentRectangularCoordinates.X = details.Satellite4.TrueRectangularCoordinates.X + Math.Abs(details.Satellite4.TrueRectangularCoordinates.Z) / 36548 * Math.Sqrt(1 - (details.Satellite4.TrueRectangularCoordinates.X / details.Satellite4.r) * (details.Satellite4.TrueRectangularCoordinates.X / details.Satellite4.r));
        details.Satellite4.ApparentRectangularCoordinates.Y = details.Satellite4.TrueRectangularCoordinates.Y;
        details.Satellite4.ApparentRectangularCoordinates.Z = details.Satellite4.TrueRectangularCoordinates.Z;

        //apply the perspective effect correction
        double W = DELTA / (DELTA + details.Satellite1.TrueRectangularCoordinates.Z / 2095);

        details.Satellite1.ApparentRectangularCoordinates.X *= W;
        details.Satellite1.ApparentRectangularCoordinates.Y *= W;

        W = DELTA / (DELTA + details.Satellite2.TrueRectangularCoordinates.Z / 2095);
        details.Satellite2.ApparentRectangularCoordinates.X *= W;
        details.Satellite2.ApparentRectangularCoordinates.Y *= W;

        W = DELTA / (DELTA + details.Satellite3.TrueRectangularCoordinates.Z / 2095);
        details.Satellite3.ApparentRectangularCoordinates.X *= W;
        details.Satellite3.ApparentRectangularCoordinates.Y *= W;

        W = DELTA / (DELTA + details.Satellite4.TrueRectangularCoordinates.Z / 2095);
        details.Satellite4.ApparentRectangularCoordinates.X *= W;
        details.Satellite4.ApparentRectangularCoordinates.Y *= W;

        return(details);
    }