Exemple #1
0
        public void Classification_Train(double[,] train_docrule, int[] label, string algorithm)
        {
            string classmodelpath;
            int    attrSize     = eclatlitems.Count;
            int    attrSizeTest = eclatlitems.Count;

            // Specify the input variables
            DecisionVariable[] variables = new DecisionVariable[attrSize];
            for (int i = 0; i < attrSize; i++)
            {
                variables[i] = new DecisionVariable((i + 1).ToString(), DecisionVariableKind.Discrete);
            }

            if (algorithm == "Tree")
            {
                classmodelpath = algorithm + ".model";
                //RandomForest tree2 = new RandomForest(2, variables);
                DecisionTree tree    = new DecisionTree(variables, 2);
                C45Learning  teacher = new C45Learning(tree);
                var          model   = teacher.Learn(train_docrule.ToJagged(), label);
                //save model
                teacher.Save(Path.Combine("", classmodelpath));
            }
            if (algorithm == "SVM")
            {
                classmodelpath = algorithm + ".model";
                var learn = new SequentialMinimalOptimization()
                {
                    UseComplexityHeuristic = true,
                    UseKernelEstimation    = false
                };
                SupportVectorMachine teacher = learn.Learn(train_docrule.ToJagged(), label);
                //save model
                teacher.Save(Path.Combine("", classmodelpath));
            }

            if (algorithm == "Logistic")
            {
                classmodelpath = algorithm + ".model";
                var learner = new IterativeReweightedLeastSquares <LogisticRegression>()
                {
                    Tolerance      = 1e-4, // Let's set some convergence parameters
                    Iterations     = 1,    // maximum number of iterations to perform
                    Regularization = 0
                };
                LogisticRegression teacher = learner.Learn(train_docrule.ToJagged(), label);
                teacher.Save(Path.Combine("", classmodelpath));
            }

            if (algorithm == "GA")
            {
                weights_ga_matlab();
            }
        }