/// <summary> /// Create a MNIST trainer (writing recognition) will be added to an environemnt. /// </summary> /// <param name="sigma">The sigma environemnt this trainer will be assigned to.</param> /// <returns>The newly created trainer.</returns> private static ITrainer CreateMnistTrainer(SigmaEnvironment sigma) { ByteRecordReader mnistImageReader = new ByteRecordReader(headerLengthBytes: 16, recordSizeBytes: 28 * 28, source: new CompressedSource(new MultiSource(new FileSource("train-images-idx3-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")))); IRecordExtractor mnistImageExtractor = mnistImageReader.Extractor("inputs", new[] { 0L, 0L }, new[] { 28L, 28L }).Preprocess(new NormalisingPreprocessor(0, 255)); ByteRecordReader mnistTargetReader = new ByteRecordReader(headerLengthBytes: 8, recordSizeBytes: 1, source: new CompressedSource(new MultiSource(new FileSource("train-labels-idx1-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")))); IRecordExtractor mnistTargetExtractor = mnistTargetReader.Extractor("targets", new[] { 0L }, new[] { 1L }).Preprocess(new OneHotPreprocessor(minValue: 0, maxValue: 9)); IDataset dataset = new Dataset("mnist-training", Dataset.BlockSizeAuto, mnistImageExtractor, mnistTargetExtractor); ITrainer trainer = sigma.CreateTrainer("test"); trainer.Network = new Network { Architecture = InputLayer.Construct(28, 28) + 2 * FullyConnectedLayer.Construct(28 * 28) + FullyConnectedLayer.Construct(10) + OutputLayer.Construct(10) + SoftMaxCrossEntropyCostLayer.Construct() }; trainer.TrainingDataIterator = new MinibatchIterator(8, dataset); trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.02); trainer.Operator = new CpuSinglethreadedOperator(); trainer.AddInitialiser("*.weights", new GaussianInitialiser(standardDeviation: 0.05f)); trainer.AddInitialiser("*.bias*", new GaussianInitialiser(standardDeviation: 0.01f, mean: 0.03f)); trainer.AddGlobalHook(new CurrentEpochIterationReporter(TimeStep.Every(1, TimeScale.Iteration))); return(trainer); }
/// <summary> /// Create an extracted MNIST training dataset, automatically download any required resources (may take a while). /// This dataset is normalised and one-hot-target-preprocessed. /// </summary> /// <param name="name">The optional name.</param> /// <returns>The MNIST dataset.</returns> public static IDataset Mnist(string name = "mnist") { IRecordExtractor mnistImageExtractor = new ByteRecordReader(headerLengthBytes: 16, recordSizeBytes: 28 * 28, source: new CompressedSource(new MultiSource(new FileSource("train-images-idx3-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")))) .Extractor("inputs", new[] { 0L, 0L }, new[] { 28L, 28L }).Preprocess(new NormalisingPreprocessor(0, 255)); IRecordExtractor mnistTargetExtractor = new ByteRecordReader(headerLengthBytes: 8, recordSizeBytes: 1, source: new CompressedSource(new MultiSource(new FileSource("train-labels-idx1-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")))) .Extractor("targets", new[] { 0L }, new[] { 1L }).Preprocess(new OneHotPreprocessor(minValue: 0, maxValue: 9)); return(new ExtractedDataset(name, ExtractedDataset.BlockSizeAuto, false, mnistImageExtractor, mnistTargetExtractor)); }
private static void SampleLoadExtractIterate() { SigmaEnvironment sigma = SigmaEnvironment.Create("test"); sigma.Prepare(); //var irisReader = new CsvRecordReader(new MultiSource(new FileSource("iris.data"), new UrlSource("http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"))); //IRecordExtractor irisExtractor = irisReader.Extractor("inputs2", new[] { 0, 3 }, "targets2", 4).AddValueMapping(4, "Iris-setosa", "Iris-versicolor", "Iris-virginica"); //irisExtractor = irisExtractor.Preprocess(new OneHotPreprocessor(sectionName: "targets2", minValue: 0, maxValue: 2), new NormalisingPreprocessor(sectionNames: "inputs2", minInputValue: 0, maxInputValue: 6)); ByteRecordReader mnistImageReader = new ByteRecordReader(headerLengthBytes: 16, recordSizeBytes: 28 * 28, source: new CompressedSource(new MultiSource(new FileSource("train-images-idx3-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")))); IRecordExtractor mnistImageExtractor = mnistImageReader.Extractor("inputs", new[] { 0L, 0L }, new[] { 28L, 28L }).Preprocess(new NormalisingPreprocessor(0, 255)); ByteRecordReader mnistTargetReader = new ByteRecordReader(headerLengthBytes: 8, recordSizeBytes: 1, source: new CompressedSource(new MultiSource(new FileSource("train-labels-idx1-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")))); IRecordExtractor mnistTargetExtractor = mnistTargetReader.Extractor("targets", new[] { 0L }, new[] { 1L }).Preprocess(new OneHotPreprocessor(minValue: 0, maxValue: 9)); IComputationHandler handler = new CpuFloat32Handler(); ExtractedDataset dataset = new ExtractedDataset("mnist-training", ExtractedDataset.BlockSizeAuto, mnistImageExtractor, mnistTargetExtractor); IDataset[] slices = dataset.SplitRecordwise(0.8, 0.2); IDataset trainingData = slices[0]; IDataset validationData = slices[1]; MinibatchIterator trainingIterator = new MinibatchIterator(1, trainingData); MinibatchIterator validationIterator = new MinibatchIterator(1, validationData); while (true) { foreach (var block in trainingIterator.Yield(handler, sigma)) { Thread.Sleep(100); PrintFormattedBlock(block, PrintUtils.AsciiGreyscalePalette); Thread.Sleep(1000); } } //Random random = new Random(); //INDArray array = new ADNDArray<float>(3, 1, 2, 2); //new GaussianInitialiser(0.05, 0.05).Initialise(array, Handler, random); //Console.WriteLine(array); //new ConstantValueInitialiser(1).Initialise(array, Handler, random); //Console.WriteLine(array); //dataset.InvalidateAndClearCaches(); }
public void TestByteRecordReaderRead() { string filename = ".unittestfile" + nameof(TestByteRecordReaderCreate); CreateCsvTempFile(filename); FileSource source = new FileSource(filename, Path.GetTempPath()); ByteRecordReader reader = new ByteRecordReader(source, 2, 1); Assert.Throws <InvalidOperationException>(() => reader.Read(1)); reader.Prepare(); Assert.AreEqual(new[] { new byte[] { 5 }, new byte[] { 3 }, new byte[] { 4 } }, reader.Read(4)); source.Dispose(); reader.Dispose(); DeleteTempFile(filename); }
private static void SampleCachedFastIteration() { SigmaEnvironment sigma = SigmaEnvironment.Create("test"); IDataSource dataSource = new CompressedSource(new MultiSource(new FileSource("train-images-idx3-ubyte.gz"), new UrlSource("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz"))); ByteRecordReader mnistImageReader = new ByteRecordReader(headerLengthBytes: 16, recordSizeBytes: 28 * 28, source: dataSource); IRecordExtractor mnistImageExtractor = mnistImageReader.Extractor("inputs", new[] { 0L, 0L }, new[] { 28L, 28L }).Preprocess(new NormalisingPreprocessor(0, 255)); IDataset dataset = new ExtractedDataset("mnist-training", ExtractedDataset.BlockSizeAuto, mnistImageExtractor); IDataset[] slices = dataset.SplitRecordwise(0.8, 0.2); IDataset trainingData = slices[0]; Stopwatch stopwatch = Stopwatch.StartNew(); IDataIterator iterator = new MinibatchIterator(10, trainingData); foreach (var block in iterator.Yield(new CpuFloat32Handler(), sigma)) { //PrintFormattedBlock(block, PrintUtils.AsciiGreyscalePalette); } Console.Write("\nFirst iteration took " + stopwatch.Elapsed + "\n+=+ Iterating over dataset again +=+ Dramatic pause..."); ArrayUtils.Range(1, 10).ToList().ForEach(i => { Thread.Sleep(500); Console.Write("."); }); stopwatch.Restart(); foreach (var block in iterator.Yield(new CpuFloat32Handler(), sigma)) { //PrintFormattedBlock(block, PrintUtils.AsciiGreyscalePalette); } Console.WriteLine("Second iteration took " + stopwatch.Elapsed); }