Exemple #1
0
        /// <summary>
        /// Convert a CSV file to binary.
        /// </summary>
        /// <param name="csvFile">The CSV file to convert.</param>
        /// <param name="format">The format.</param>
        /// <param name="binFile">The binary file.</param>
        /// <param name="input">The input.</param>
        /// <param name="ideal">The ideal.</param>
        /// <param name="headers">True, if headers are present.</param>
        public static void ConvertCSV2Binary(FileInfo csvFile, CSVFormat format,
                                             FileInfo binFile, int[] input, int[] ideal, bool headers)
        {
            binFile.Delete();
            var csv = new ReadCSV(csvFile.ToString(), headers, format);

            var buffer = new BufferedMLDataSet(binFile.ToString());

            buffer.BeginLoad(input.Length, ideal.Length);
            while (csv.Next())
            {
                var inputData = new BasicMLData(input.Length);
                var idealData = new BasicMLData(ideal.Length);

                // handle input data
                for (int i = 0; i < input.Length; i++)
                {
                    inputData[i] = csv.GetDouble(input[i]);
                }

                // handle input data
                for (int i = 0; i < ideal.Length; i++)
                {
                    idealData[i] = csv.GetDouble(ideal[i]);
                }

                // add to dataset

                buffer.Add(inputData, idealData);
            }
            buffer.EndLoad();
            buffer.Close();
            csv.Close();
        }
Exemple #2
0
        /// <summary>
        /// Convert a CSV file to a binary training file.
        /// </summary>
        /// <param name="csvFile">The CSV file.</param>
        /// <param name="format">The format.</param>
        /// <param name="binFile">The binary file.</param>
        /// <param name="inputCount">The number of input values.</param>
        /// <param name="outputCount">The number of output values.</param>
        /// <param name="headers">True, if there are headers on the3 CSV.</param>
        /// <param name="expectSignificance">Should a significance column be expected.</param>
        public static void ConvertCSV2Binary(String csvFile, CSVFormat format,
                                             String binFile, int inputCount, int outputCount,
                                             bool headers, bool expectSignificance)
        {
            new FileInfo(binFile).Delete();

            var csv = new CSVMLDataSet(csvFile,
                                       inputCount, outputCount, false, format, expectSignificance);
            var buffer = new BufferedMLDataSet(binFile);
            buffer.BeginLoad(inputCount, outputCount);
            foreach (IMLDataPair pair in csv)
            {
                buffer.Add(pair);
            }
            buffer.EndLoad();
        }
Exemple #3
0
        /// <summary>
        /// Process the individual training file.
        /// </summary>
        /// <param name="file">The training file to process.</param>
        /// <param name="output">The data set to output to.</param>
        protected void ProcessFile(string file, BufferedMLDataSet output)
        {
            var inputData = new BasicMLData(output.InputSize);
            var idealData = new BasicMLData(output.IdealSize);

            var csv = new ReadCSV(file, true, CSVFormat.English);

            while (csv.Next())
            {
                var    a     = new double[Config.InputWindow + 1];
                double close = csv.GetDouble(1);

                const int fastIndex = 2;
                const int slowIndex = fastIndex + Config.InputWindow;

                a[0] = close;
                for (int i = 0; i < 3; i++)
                {
                    double fast = csv.GetDouble(fastIndex + i);
                    double slow = csv.GetDouble(slowIndex + i);
                    double diff = _fieldDifference.Normalize((fast - slow) / Config.PipSize);
                    a[i + 1] = diff;
                }
                _window.Add(a);

                if (_window.IsFull())
                {
                    double max = (_window.CalculateMax(0, Config.InputWindow) - close) / Config.PipSize;
                    double min = (_window.CalculateMin(0, Config.InputWindow) - close) / Config.PipSize;

                    double o = Math.Abs(max) > Math.Abs(min) ? max : min;

                    a = _window.GetLast();
                    for (int i = 0; i < 3; i++)
                    {
                        inputData[i] = a[i + 1];
                    }

                    o            = _fieldOutcome.Normalize(o);
                    idealData[0] = o;

                    output.Add(inputData, idealData);
                }
            }
        }