Exemple #1
0
        // method to export true vs estimated (NN) output for a particular output index
        public void TestNetworkOutputValidationTimeDomain(int outputIndex)
        {
            double[,] trueOutput   = new double[Inputs.Count() - 1, 2];
            double[,] nnOutput     = new double[Inputs.Count() - 1, 2];
            double[,] bestNNOutput = new double[Inputs.Count() - 1, 2];
            double[] tempInput1 = new double[NumInputs];
            double[] tempInput2 = new double[NumInputs];
            double[] tempOutput1;
            double[] tempOutput2;

            for (int i = 0; i < Inputs.Count() - 1; i++)
            {
                if (i == 0)
                {
                    for (int j = 0; j < NumInputs; j++)
                    {
                        tempInput1[j] = Inputs[0][j];
                        tempInput2[j] = Inputs[0][j];
                    }
                }
                trueOutput[i, 0] = Convert.ToDouble(i);
                trueOutput[i, 1] = Outputs[i][outputIndex];
                nnOutput[i, 0]   = Convert.ToDouble(i);
                tempOutput1      = NeuralNet.ForwardPass(tempInput1);
                nnOutput[i, 1]   = tempOutput1[outputIndex];
                for (int j = 0; j < NumOutputs; j++)
                {
                    tempInput1[j] = tempOutput1[j];
                }
                for (int j = NumOutputs; j < NumInputs; j++)
                {
                    tempInput1[j] = Inputs[i][j];
                }
                bestNNOutput[i, 0] = Convert.ToDouble(i);
                tempOutput2        = BestNetwork.ForwardPass(tempInput2);
                bestNNOutput[i, 1] = tempOutput2[outputIndex];
                for (int j = 0; j < NumOutputs; j++)
                {
                    tempInput2[j] = tempOutput2[j];
                }
                for (int j = NumOutputs; j < NumInputs; j++)
                {
                    tempInput2[j] = Inputs[i][j];
                }
            }
            DE.Export2DArray(trueOutput, "true_data_validation");
            DE.Export2DArray(nnOutput, "nn_output_validation");
            DE.Export2DArray(bestNNOutput, "best_nn_output_validation");
        }
Exemple #2
0
        // method to export true vs estimated (NN) output for a particular output index
        public void TestNetworkOutputTraining(int inputIndex, int outputIndex)
        {
            double[,] trueOutput   = new double[Inputs.Count(), 2];
            double[,] nnOutput     = new double[Inputs.Count(), 2];
            double[,] bestNNOutput = new double[Inputs.Count(), 2];

            for (int i = 0; i < Inputs.Count(); i++)
            {
                trueOutput[i, 0]   = Inputs[i][inputIndex];
                trueOutput[i, 1]   = Outputs[i][outputIndex];
                nnOutput[i, 0]     = Inputs[i][inputIndex];
                nnOutput[i, 1]     = NeuralNet.ForwardPass(Inputs[i])[outputIndex];
                bestNNOutput[i, 0] = Inputs[i][inputIndex];
                bestNNOutput[i, 1] = BestNetwork.ForwardPass(Inputs[i])[outputIndex];
            }
            DE.Export2DArray(trueOutput, "true_data_training");
            DE.Export2DArray(nnOutput, "nn_output_training");
            DE.Export2DArray(bestNNOutput, "best_nn_output_training");
        }
Exemple #3
0
        // method to export true vs estimated (NN) output for a particular output index
        public void TestNetworkOutputValidation(int inputIndex, int outputIndex)
        {
            double[,] trueOutput   = new double[ValidationInputs.Count(), 2];
            double[,] nnOutput     = new double[ValidationInputs.Count(), 2];
            double[,] bestNNOutput = new double[ValidationInputs.Count(), 2];

            for (int i = 0; i < ValidationInputs.Count(); i++)
            {
                trueOutput[i, 0]   = ValidationInputs[i][inputIndex];
                trueOutput[i, 1]   = ValidationOutputs[i][outputIndex];
                nnOutput[i, 0]     = ValidationInputs[i][inputIndex];
                nnOutput[i, 1]     = NeuralNet.ForwardPass(ValidationInputs[i])[outputIndex];
                bestNNOutput[i, 0] = ValidationInputs[i][inputIndex];
                bestNNOutput[i, 1] = BestNetwork.ForwardPass(ValidationInputs[i])[outputIndex];
            }
            DE.Export2DArray(trueOutput, "true_data_validation");
            DE.Export2DArray(nnOutput, "nn_output_validation");
            DE.Export2DArray(bestNNOutput, "best_nn_output_validation");
        }