Exemple #1
0
        /// <summary>
        ///  实现功能: 基于Frequency-tuned 的图像显著性检测
        ///    参考论文: Frequency-tuned Salient Region Detection, Radhakrishna Achantay, Page 4-5, 2009 CVPR
        ///               http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/
        ///    参考论文作者RGB转LAB的浮点版本
        /// </summary>
        /// <param name="srcBitmap"></param>
        /// <returns></returns>
        public static Bitmap SalientRegionDetectionBasedOnFT(Bitmap srcBitmap)
        {
            int        width = srcBitmap.Width, height = srcBitmap.Height;
            Rectangle  rect      = new Rectangle(0, 0, width, height);
            BitmapData srcBmData = srcBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

            Bitmap     dstBitmap = BasicMethodClass.CreateGrayscaleImage(width, height);
            BitmapData dstBmData = dstBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

            IntPtr srcScan = srcBmData.Scan0;
            IntPtr dstScan = dstBmData.Scan0;

            unsafe
            {
                double * srcP = (double *)(void *)srcScan;
                byte *   dstP = (byte *)(void *)dstScan;
                int      Index = 0, CurIndex = 0, srcStride = srcBmData.Stride, dstStride = dstBmData.Stride, X, Y;
                double   MeanL = 0, MeanA = 0, MeanB = 0;
                double[] LabF;
                double[] DistMap = new double[dstStride * height];
                LabF = BasicMethodClass.sRGBtoXYZ(srcBmData, width, height, out MeanL, out MeanA, out MeanB);
                //     LabF = BasicMethodClass.GaussianSmooth(LabF, width, srcBmData.Stride, srcBmData.Height);
                double maxval = 0;
                double minval = double.MaxValue;
                int    i      = 0;
                for (Y = 0; Y < height; Y++)
                {
                    Index = Y * srcStride;

                    CurIndex = Y * dstStride;   //
                    for (X = 0; X < width; X++) //    计算像素的显著性
                    {                           //此处有时会出现数组越界,原因暂时未知(已解决,目标8位图有3字节的对齐)
                        double curValue = (MeanL - LabF[Index]) * (MeanL - LabF[Index]) + (MeanA - LabF[Index + 1]) * (MeanA - LabF[Index + 1]) + (MeanB - LabF[Index + 2]) * (MeanB - LabF[Index + 2]);
                        DistMap[CurIndex] = curValue;
                        Index            += 3;
                        CurIndex++;
                        if (maxval < curValue)
                        {
                            maxval = curValue;
                        }
                        if (minval > curValue)
                        {
                            minval = curValue;
                        }
                        i++;
                    }
                }
                BasicMethodClass.Normalize(DistMap, dstBmData.Stride, height, maxval, minval, dstP);
                //写入序列化函数中。。
            }
            srcBitmap.UnlockBits(srcBmData);
            dstBitmap.UnlockBits(dstBmData);
            return(dstBitmap);
        }
Exemple #2
0
        public static Bitmap SalientRegionDetectionBasedOnFT(Bitmap srcBitmap, float distcof)
        {
            int        width = srcBitmap.Width, height = srcBitmap.Height;
            Rectangle  rect      = new Rectangle(0, 0, width, height);
            BitmapData srcBmData = srcBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

            Bitmap     dstBitmap = BasicMethodClass.CreateGrayscaleImage(width, height);
            BitmapData dstBmData = dstBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

            IntPtr srcScan = srcBmData.Scan0;
            IntPtr dstScan = dstBmData.Scan0;

            unsafe
            {
                double * srcP = (double *)(void *)srcScan;
                byte *   dstP = (byte *)(void *)dstScan;
                int      Index = 0, CurIndex = 0, srcStride = srcBmData.Stride, dstStride = dstBmData.Stride, X, Y;
                double   MeanL = 0, MeanA = 0, MeanB = 0;
                double[] LabF;
                double[] DistMap = new double[dstStride * height];
                LabF = BasicMethodClass.sRGBtoXYZ(srcBmData, width, height, out MeanL, out MeanA, out MeanB);
                //     LabF = BasicMethodClass.GaussianSmooth(LabF, width, srcBmData.Stride, srcBmData.Height);

                //加入显著位置权重
                int wk = (int)(width / 2), hk = (int)(height / 2);

                for (Y = 0; Y < height; Y++)
                {
                    Index = Y * srcStride;

                    CurIndex = Y * dstStride;   //
                    for (X = 0; X < width; X++) //    计算像素的显著性
                    {                           //此处有时会出现数组越界,原因暂时未知(已解决,目标8位图有3字节的对齐)
                        DistMap[CurIndex]  = (MeanL - LabF[Index]) * (MeanL - LabF[Index]) + (MeanA - LabF[Index + 1]) * (MeanA - LabF[Index + 1]) + (MeanB - LabF[Index + 2]) * (MeanB - LabF[Index + 2]);
                        DistMap[CurIndex] *= Math.Max(1 - (Math.Abs(wk - X) + Math.Abs(hk - Y)) / (wk + hk + 1.0), distcof);
                        Index             += 3;
                        CurIndex++;
                    }
                }
                DistMap = BasicMethodClass.Normalize(DistMap, dstBmData.Stride, height, dstP);
                //写入序列化函数中。。
            }
            srcBitmap.UnlockBits(srcBmData);
            dstBitmap.UnlockBits(dstBmData);
            return(dstBitmap);
        }
Exemple #3
0
        /// <summary>
        /// 实现功能: saliency is determined as the local contrast of an image region with respect to its neighborhood at various scales
        /// 参考论文: Salient Region Detection and Segmentation   Radhakrishna Achanta, Francisco Estrada, Patricia Wils, and Sabine SÄusstrunk   2008  , Page 4-5
        /// 参考laviewpbt的C实现 http://blog.csdn.net/laviewpbt/article/details/38357017
        /// </summary>
        /// <param name="srcBitmap"></param>
        /// <returns></returns>
        public static Bitmap SalientRegionDetectionBasedonLC(Bitmap srcBitmap)
        {
            int        width = srcBitmap.Width, height = srcBitmap.Height;
            Rectangle  rect      = new Rectangle(0, 0, width, height);
            BitmapData srcBmData = srcBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

            Bitmap     dstBitmap = BasicMethodClass.CreateGrayscaleImage(width, height);
            BitmapData dstBmData = dstBitmap.LockBits(rect,
                                                      ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

            IntPtr srcScan = srcBmData.Scan0;
            IntPtr dstScan = dstBmData.Scan0;

            unsafe
            {
                byte *srcP = (byte *)(void *)srcScan;
                byte *dstP = (byte *)(void *)dstScan;
                int   Value;

                int   DistMaxValue = 0;                   //用于记录最大距离,用于最后归纳图片的有效颜色范围
                int   IndexBit, CurIndex;                 //用于定位字节位和像素位置
                int[] Gray     = new int[width * height]; //用于保存计算完成了的灰度值
                int[] HistGram = new int[256];            //用于直方图统计
                int[] Dist     = new int[256];            //用于记录每种颜色到各个颜色的距离
                //int[] DistMap = new int[width*height];//显著性图

                //创建直方图和灰度图
                for (int y = 0; y < height; y++)
                {
                    IndexBit = srcBmData.Stride * y;
                    CurIndex = width * y;
                    for (int x = 0; x < width; x++)
                    {
                        Value = (srcP[IndexBit] + srcP[IndexBit + 1] * 2 + srcP[IndexBit + 2]) / 4;
                        HistGram[Value]++;
                        Gray[CurIndex] = Value;
                        IndexBit      += 3;
                        CurIndex++;
                    }
                }
                //记录颜色距离
                for (int Y = 0; Y < 256; Y++)
                {
                    Value = 0;
                    for (int X = 0; X < 256; X++)
                    {
                        Value += Math.Abs(Y - X) * HistGram[X];//Y点灰度与整张图的距离
                    }
                    Dist[Y] = Value;
                    if (DistMaxValue < Value)
                    {
                        DistMaxValue = Value;
                    }
                }

                //计算用于减小距离为有效颜色值的倍数
                DistMaxValue = DistMaxValue / 256;

                //计算显著性图片
                for (int Y = 0; Y < height; Y++)
                {
                    CurIndex = Y * width;
                    IndexBit = Y * dstBmData.Stride;
                    for (int X = 0; X < width; X++)
                    {
                        Value          = Dist[Gray[CurIndex]]; //    计算全图每个像素的显著性
                        dstP[IndexBit] = (byte)(Value / DistMaxValue);
                        CurIndex++;
                        IndexBit++;
                    }
                }
            }
            srcBitmap.UnlockBits(srcBmData);
            dstBitmap.UnlockBits(dstBmData);
            return(dstBitmap);
        }