/// <summary> /// Create a feedforward neural network, train it, and run some test examples. /// </summary> public FeedForwardRegression() { // Define the function we are trying to model in the range [0, 1] double TestFunction(double x) { return(Math.Sqrt(x) + 0.3 * Math.Sin(6 * Math.Sqrt(x))); } // Create the data set // Frame the problem as a regression problem; one input (x) and one output (y) DataSet.Regression dataSet = new DataSet.Regression(1, 1); // Populate data set - data point takes a double array for inputs and outputs Random random = new Random(421); for (int i = 0; i < 10000; i++) { double nextDouble = random.NextDouble(); // In the range [0, 1] dataSet.AddDataPoint(new double[] { nextDouble }, new double[] { TestFunction(nextDouble) }); } // Split the data points randomly into training, validation, and test sets in the ratio // 7:2:1 dataSet.AssignDataPoints(0.7, 0.2, 0.1); // Create feedforward network // Create a network with one input and one output FeedForwardNetwork network = new FeedForwardNetwork(1, 1); // Add five hidden nodes, and connect them to the output layer using sigmoid activation network.AddHiddenLayer(32, new ActivationFunction.Sigmoid()) .AddOutputLayer(new ActivationFunction.Sigmoid()); // Set up the backpropagation trainer // Create the batch selector - here, select a random mini-batch from the training set // with 32 examples in it DataPoint[] select(DataSet data) => data.GetRandomTrainingSubset(32); BackpropagationTrainer trainer = new BackpropagationTrainer() { // Set the learning rate LearningRate = 0.1, // Initialise network weights using a uniform distribution initialiser = new Initialiser.Uniform(-0.01, 0.01, false), // Update weights after the whole batch rather than after each point stochastic = false, // Train on the whole training set each iteration batchSelector = new BackpropagationTrainer.BatchSelector(select), // Use squared error as the loss function lossFunction = new LossFunction.SquaredError(), // Log training data every 5000 epochs; access this with trainer.evaluations evaluationFrequency = 50 }; // Add a termination condition to the trainer; it will stop after 1200 epochs trainer.terminationConditions.Add(new TerminationCondition.EpochLimit(1200)); // Troubleshoot trainer (this will notify you of any missing required settings) foreach (string s in trainer.Troubleshoot()) { Console.WriteLine(); } // Start training // Train the network on the data set trainer.Train(network, dataSet); // Print training data to the console List <double[]> evals = trainer.evaluations; foreach (double[] arr in evals) { Console.WriteLine("epoch={0}, training error={1}, " + "validation error={2}", arr[0], arr[1], arr[2]); } Console.WriteLine(); // Test // Print the test set loss Console.WriteLine("Mean test loss per point: " + trainer.TestLoss() + "\n"); // Print 64 samples from the test set foreach (DataPoint dataPoint in dataSet.GetRandomTestSubset(64)) { // Feed the network a test point and record the output double output = network.GetOutput(Matrix.ToColumnMatrix(dataPoint.input))[0, 0]; Console.WriteLine("({0}) -> {1} : expected {2}", dataPoint.input[0], output, dataPoint.output[0]); } Console.WriteLine(); // If training takes a long time, this will notify you when it finishes Console.Beep(880, 2000); }
/// <summary> /// Create a feedforward neural network, train it, and run some test examples. /// </summary> public FeedForwardXor() { // Create the data set // Frame the problem as a regression problem; two inputs (x, y) and one output (z) DataSet.Regression dataSet = new DataSet.Regression(2, 1); // Populate data set - data point takes a double array for inputs and outputs dataSet.AddDataPoint(new double[] { 0, 0 }, new double[] { 0 }); dataSet.AddDataPoint(new double[] { 1, 0 }, new double[] { 1 }); dataSet.AddDataPoint(new double[] { 0, 1 }, new double[] { 1 }); dataSet.AddDataPoint(new double[] { 1, 1 }, new double[] { 0 }); // Split the data points randomly into training, validation, and test sets // Here, put all data points into the training set dataSet.AssignDataPoints(1, 0, 0); // Create feedforward network // Create a network with two inputs and one output FeedForwardNetwork network = new FeedForwardNetwork(2, 1); // Add five hidden nodes, and connect them to the output layer using sigmoid activation network.AddHiddenLayer(5, new ActivationFunction.Sigmoid()) .AddOutputLayer(new ActivationFunction.Sigmoid()); // Set up the backpropagation trainer // Create the batch selector - here, select the whole training set, but this can be // used to select mini-batches, single points, etc. DataPoint[] select(DataSet data) => data.TrainingSet; BackpropagationTrainer trainer = new BackpropagationTrainer() { // Set the learning rate LearningRate = 0.09, // Initialise network weights using a uniform distribution initialiser = new Initialiser.Uniform(-0.2, 0.2, false), // Update weights after the whole batch rather than after each point stochastic = false, // Train on the whole training set each iteration batchSelector = new BackpropagationTrainer.BatchSelector(select), // Use squared error as the loss function lossFunction = new LossFunction.SquaredError(), // Log training data every 5000 epochs; access this with trainer.evaluations evaluationFrequency = 8000 }; // Add a termination condition to the trainer; it will stop after 50,000 epochs trainer.terminationConditions.Add(new TerminationCondition.EpochLimit(80000)); // Troubleshoot trainer (this will notify you of any missing required settings) foreach (string s in trainer.Troubleshoot()) { Console.WriteLine(); } // Start training // Train the network on the data set trainer.Train(network, dataSet); // Print training data to the console List <double[]> evals = trainer.evaluations; foreach (double[] arr in evals) { Console.WriteLine("epoch={0}, training error={1}, " + "validation error={2}", arr[0], arr[1], arr[2]); } Console.WriteLine(); // Test foreach (DataPoint dataPoint in dataSet.TrainingSet) { // Feed the network a test point and record the output double output = network.GetOutput(Matrix.ToColumnMatrix(dataPoint.input))[0, 0]; Console.WriteLine("({0}, {1}) -> {2} : expected {3}", dataPoint.input[0], dataPoint.input[1], output, dataPoint.output[0]); } Console.WriteLine(); }
/// <summary> /// Create a feedforward neural network, train it, and run some test examples. /// </summary> public FeedForwardClassification() { // Create the data set // Create a data set for classification with two independent variables DataSet.Classification dataSet = new DataSet.Classification(2); // Populate data set - data point takes a double array for inputs and an integer class // as output Random random = new Random(386); for (int i = 0; i < 10000; i++) { double d1 = random.NextDouble(); // In the range [0, 1] double d2 = random.NextDouble(); int category; if ((d1 < 0.5) && (d2 < 0.5)) { category = 0; } else if ((d1 < 0.5) && (d2 >= 0.5)) { category = 1; } else if (d2 < 0.5) { category = 2; } else { category = 3; } dataSet.AddDataPoint(new double[] { d1, d2 }, category); } dataSet.OneHotAll(); // Convert all data to one hot // Split the data points randomly into training, validation, and test sets in the ratio // 7:2:1 dataSet.AssignDataPoints(0.7, 0.2, 0.1); dataSet.OneHotAll(); // Create feedforward network // Create a network with two inputs and four outputs FeedForwardNetwork network = new FeedForwardNetwork(2, 4); // Add five hidden nodes with sigmoid activation, and connect them to the output layer // using softmax activation network.AddHiddenLayer(5, new ActivationFunction.Sigmoid()) .AddOutputLayer(new ActivationFunction.Softmax()); // Set up backpropagation trainer // Create the batch selector - here, select a random mini-batch from the training set // with 32 examples in it DataPoint[] select(DataSet data) => data.GetRandomTrainingSubset(32); BackpropagationTrainer trainer = new BackpropagationTrainer() { // Set the learning rate LearningRate = 0.1, // Initialise network weights using a uniform distribution initialiser = new Initialiser.Uniform(-0.01, 0.01, false), // Update weights after the whole batch rather than after each point stochastic = false, // Train on the whole training set each iteration batchSelector = new BackpropagationTrainer.BatchSelector(select), // Use squared error as the loss function lossFunction = new LossFunction.NegativeLogProb(), // Log training data every 5000 epochs; access this with trainer.evaluations evaluationFrequency = 5 }; // Add a termination condition to the trainer; it will stop after 1200 epochs trainer.terminationConditions.Add(new TerminationCondition.EpochLimit(1)); // Troubleshoot trainer (this will notify you of any missing required settings) foreach (string s in trainer.Troubleshoot()) { Console.WriteLine(); } // Start training // Train the network on the data set trainer.Train(network, dataSet); // Print training data to the console List <double[]> evals = trainer.evaluations; foreach (double[] arr in evals) { Console.WriteLine("epoch={0}, training error={1}, " + "validation error={2}", arr[0], arr[1], arr[2]); } Console.WriteLine(); }