Exemple #1
0
        private static void ClassicIterations(int controllerSize, int headCount, int memoryN, int memoryM, Random rand, List <double[][]> inputs, List <double[][]> outputs)
        {
            int weightsCount;
            var machine = GetRandomMachine(out weightsCount, controllerSize, headCount, memoryN, memoryM, rand);
            RMSPropWeightUpdater rmsPropWeightUpdater = new RMSPropWeightUpdater(weightsCount, 0.95, 0.5, 0.001);
            BPTTTeacher          teacher = new BPTTTeacher(machine, rmsPropWeightUpdater);

            double[][] errors = new double[100][];
            long[]     times  = new long[100];
            for (int i = 0; i < 100; i++)
            {
                errors[i] = new double[4];
                for (int j = 0; j < 4; j++)
                {
                    errors[i][j] = 1;
                }
            }

            int count = inputs.Count;

            for (int i = 1; i < 10000000; i++)
            {
                int        index     = rand.Next(count);
                double[][] input     = inputs[index];
                double[][] output    = outputs[index];
                Stopwatch  stopwatch = new Stopwatch();
                stopwatch.Start();
                double[][] machinesOutput = teacher.Train(input, output);
                stopwatch.Stop();
                times[i % 100] = stopwatch.ElapsedMilliseconds;

                double[] error = CalculateLoss(output, machinesOutput);

                errors[i % 100][0] = error[0];
                errors[i % 100][1] = error[1];
                errors[i % 100][2] = error[2];
                errors[i % 100][3] = error[3];

                double averageError = errors.Average(doubles => doubles.Average());

                if (i % 100 == 0)
                {
                    WriteExample(i, times, errors, averageError, output, machinesOutput);
                }
                if (i % 2500 == 0)
                {
                    string directoryName = string.Format("{0}_{1}_{2}_{3}", controllerSize, headCount, memoryM, memoryN);
                    if (!Directory.Exists(directoryName))
                    {
                        Directory.CreateDirectory(directoryName);
                    }
                    string filename = string.Format("NTM_{0}_{1}_{2}.ntm", i, DateTime.Now.ToString("s").Replace(":", ""),
                                                    averageError);
                    machine.Save(Path.Combine(directoryName, filename));
                }
            }
        }
Exemple #2
0
        private static void Iterate(BPTTTeacher teacher, double[] errors, long[] times, int id)
        {
            const int vectorSize = 8;
            const int minSeqLen  = 1;
            const int maxSeqLen  = 20;
            //double savingThreshold = 0.0005;
            Random rand = new Random(DateTime.Now.Millisecond);

            for (int i = 1; i <= 100; i++)
            {
                var sequence = SequenceGenerator.GenerateSequence(rand.Next(minSeqLen, maxSeqLen), vectorSize);

                Stopwatch stopwatch = new Stopwatch();
                stopwatch.Start();
                double[][] machinesOutput = teacher.Train(sequence.Item1, sequence.Item2);
                stopwatch.Stop();
                times[i % 100] = stopwatch.ElapsedMilliseconds;

                double error = CalculateLoss(sequence.Item2, machinesOutput);

                errors[i % 100] = error;

                if (i % 100 == 0)
                {
                    double averageError2 = errors.Average();
                    Console.WriteLine("Iteration: {0}, error: {1}, id: {2}", i, averageError2, id);

                    //if (averageError2 < savingThreshold)
                    //{
                    //    savingThreshold /= 2;
                    //    machine.Save("NTM_" + averageError2 + "_" + DateTime.Now.ToString("s").Replace(":", ""));
                    //    maxSeqLen++;
                    //    minSeqLen++;
                    //}
                }
                //if (i % 100000 == 0)
                //{
                //    machine.Save("NTM_" + i + DateTime.Now.ToString("s").Replace(":", ""));
                //}
            }
        }
Exemple #3
0
        public void Run()
        {
            const int vectorSize = 8;
            const int minSeqLen  = 1;
            const int maxSeqLen  = 20;

            for (int j = 0; j < Priority; j++)
            {
                for (int i = 0; i < EpochLength; i++)
                {
                    var        sequence       = SequenceGenerator.GenerateSequence(_rand.Next(minSeqLen, maxSeqLen), vectorSize);
                    double[][] machinesOutput = _teacher.Train(sequence.Item1, sequence.Item2);
                    double     error          = CalculateLoss(sequence.Item2, machinesOutput);
                    _longTermAverageErrors.Add(error);
                    if (_longTermAverageErrors.Count > 1000)
                    {
                        _longTermAverageErrors.RemoveAt(0);
                    }
                    _iterations++;
                }
            }
        }
Exemple #4
0
 public void Run()
 {
     Console.WriteLine("Running task {0} with priority {1}", ID, Priority);
     double[][] lastKnown    = null;
     double[][] lastComputed = null;
     double[]   lastErrors   = null;
     for (int j = 0; j < Priority; j++)
     {
         for (int i = 0; i < EpochLength; i++)
         {
             var        sequence       = _exampleGenerator();
             double[][] machinesOutput = _teacher.Train(sequence.Item1, sequence.Item2);
             double[]   errors         = CalculateLoss(sequence.Item2, machinesOutput);
             _longTermAverageErrors.Add(errors.Average());
             if (_longTermAverageErrors.Count > 1000)
             {
                 _longTermAverageErrors.RemoveAt(0);
             }
             _iterations++;
             if (_iterations % 2500 == 0)
             {
                 if (!Directory.Exists(_directoryName))
                 {
                     Directory.CreateDirectory(_directoryName);
                 }
                 string filename = string.Format("NTM_{0}_{1}_{2}.ntm", _iterations, DateTime.Now.ToString("s").Replace(":", ""), GetLongTermErrorAverage());
                 _machine.Save(Path.Combine(_directoryName, filename));
             }
             lastKnown    = sequence.Item2;
             lastComputed = machinesOutput;
             lastErrors   = errors;
         }
     }
     if (lastErrors != null && lastKnown != null && lastComputed != null)
     {
         WriteExample(lastErrors, lastKnown, lastComputed);
     }
 }
Exemple #5
0
        static void Main()
        {
            DataStream reportStream = null;
            try
            {
                YoVisionClientHelper yoVisionClientHelper = new YoVisionClientHelper();
                yoVisionClientHelper.Connect(EndpointType.NetTcp, 8081, "localhost", "YoVisionServer");
                reportStream = yoVisionClientHelper.RegisterDataStream("NGram task training",
                    new Int32DataType("Iteration"),
                    new DoubleDataType("Average data loss"),
                    new Double2DArrayType("Input"),
                    new Double2DArrayType("Known output"),
                    new Double2DArrayType("Real output"),
                    new Double2DArrayType("Head addressings"));
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }

            const int controllerSize = 100;
            const int headsCount = 1;
            const int memoryN = 128;
            const int memoryM = 20;
            const int inputSize = 1;
            const int outputSize = 1;

            Random rand = new Random(42);
            NeuralTuringMachine machine = new NeuralTuringMachine(inputSize, outputSize, controllerSize, headsCount, memoryN, memoryM, new RandomWeightInitializer(rand));

            int headUnitSize = Head.GetUnitSize(memoryM);

             var weightsCount =
                (headsCount * memoryN) +
                (memoryN * memoryM) +
                (controllerSize * headsCount * memoryM) +
                (controllerSize * inputSize) +
                (controllerSize) +
                (outputSize * (controllerSize + 1)) +
                (headsCount * headUnitSize * (controllerSize + 1));

            Console.WriteLine(weightsCount);

            RMSPropWeightUpdater rmsPropWeightUpdater = new RMSPropWeightUpdater(weightsCount, 0.95, 0.5, 0.001, 0.001);

            BPTTTeacher teacher = new BPTTTeacher(machine, rmsPropWeightUpdater);

            long[] times = new long[100];

            for (int i = 1; i < 10000000; i++)
            {
                Tuple<double[][], double[][]> data = SequenceGenerator.GenerateSequence(SequenceGenerator.GeneratePropabilities());

                Stopwatch stopwatch = new Stopwatch();
                stopwatch.Start();
                double[][] headAddressings;
                double[][] output = teacher.TrainVerbose(data.Item1, data.Item2, out headAddressings);
                stopwatch.Stop();
                times[i % 100] = stopwatch.ElapsedMilliseconds;
                
                if (i%10 == 0)
                {
                    double loss = CalculateLogLoss(output, data.Item2);
                    if (reportStream != null)
                    {
                        reportStream.Set("Iteration", i);
                        reportStream.Set("Average data loss", loss);
                        reportStream.Set("Input", data.Item1);
                        reportStream.Set("Known output", data.Item2);
                        reportStream.Set("Real output", output);
                        reportStream.Set("Head addressings", headAddressings);
                        reportStream.SendData();
                    }
                }

                if (i%100 == 0)
                {
                    Console.WriteLine("Iteration: {0}, iterations per second: {1:0.0}", i, 1000 / times.Average());
                }


                if (i%1000 == 0)
                {
                    double[] props = SequenceGenerator.GeneratePropabilities();
                    
                    const int sampleCount = 100;

                    double[] losses = new double[sampleCount];

                    for (int j = 0; j < sampleCount; j++)
                    {
                        Tuple<double[][], double[][]> sequence = SequenceGenerator.GenerateSequence(props);
                        var machineOutput = teacher.Train(sequence.Item1, sequence.Item2);
                        double[][] knownOutput = sequence.Item2;
                        double loss = CalculateLogLoss(machineOutput, knownOutput);
                        losses[j] = -loss;
                    }

                    Console.WriteLine("Loss [bits per sequence]: {0}", losses.Average());
                }

                if (i % 1000 == 0)
                {
                    machine.Save("NTM_" + i + DateTime.Now.ToString("s").Replace(":", ""));
                }
            }
        }