Exemple #1
0
    public static int zgbfa(ref Complex[] abd, int lda, int n, int ml, int mu, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZGBFA factors a complex band matrix by elimination.
    //
    //  Discussion:
    //
    //    ZGBFA is usually called by ZGBCO, but it can be called
    //    directly with a saving in time if RCOND is not needed.
    //
    //  Band storage:
    //
    //    If A is a band matrix, the following program segment
    //    will set up the input.
    //
    //      ml = (band width below the diagonal)
    //      mu = (band width above the diagonal)
    //      m = ml + mu + 1
    //      do j = 1, n
    //        i1 = max ( 1, j - mu )
    //        i2 = min ( n, j + ml )
    //        do i = i1, i2
    //          k = i - j + m
    //          abd(k,j) = a(i,j)
    //        end do
    //      end do
    //
    //    This uses rows ML+1 through 2*ML+MU+1 of ABD.
    //    In addition, the first ML rows in ABD are used for
    //    elements generated during the triangularization.
    //    The total number of rows needed in ABD is 2*ML+MU+1.
    //    The ML+MU by ML+MU upper left triangle and the
    //    ML by ML lower right triangle are not referenced.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, new Complex ABD[LDA*N], on input, contains the matrix in
    //    band storage.  The columns of the matrix are stored in the columns
    //    of ABD and the diagonals of the matrix are stored in rows ML+1
    //    through 2*ML+MU+1 of ABD.  On output, an upper triangular matrix
    //    in band storage and the multipliers which were used to obtain it.
    //    The factorization can be written A = L*U where L is a product of
    //    permutation and unit lower triangular matrices and U is upper triangular.
    //
    //    Input, int LDA, the leading dimension of ABD.
    //    LDA must be at least 2*ML+MU+1.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int ML, the number of diagonals below the main diagonal.
    //    0 <= ML < N.
    //
    //    Input, int MU, the number of diagonals above the main diagonal.
    //    0 <= MU < N.  More efficient if ML <= MU.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, int ZGBFA.
    //    0, normal value.
    //    K, if U(K,K) == 0.0.  This is not an error condition for this
    //    subroutine, but it does indicate that ZGBSL will divide by zero if
    //    called.  Use RCOND in ZGBCO for a reliable indication of singularity.
    //
    {
        int i;
        int jz;
        int k;

        int m    = ml + mu + 1;
        int info = 0;
        //
        //  Zero initial fill-in columns.
        //
        int j0 = mu + 2;
        int j1 = Math.Min(n, m) - 1;

        for (jz = j0; jz <= j1; jz++)
        {
            int i0 = m + 1 - jz;
            for (i = i0; i <= ml; i++)
            {
                abd[i - 1 + (jz - 1) * lda] = new Complex(0.0, 0.0);
            }
        }

        jz = j1;
        int ju = 0;

        //
        //  Gaussian elimination with partial pivoting.
        //
        for (k = 1; k <= n - 1; k++)
        {
            //
            //  Zero next fill-in column
            //
            jz += 1;
            if (jz <= n)
            {
                for (i = 1; i <= ml; i++)
                {
                    abd[i - 1 + (jz - 1) * lda] = new Complex(0.0, 0.0);
                }
            }

            //
            //  Find L = pivot index.
            //
            int lm = Math.Min(ml, n - k);
            int l  = BLAS1Z.izamax(lm + 1, abd, 1, index: +m - 1 + (k - 1) * lda) + m - 1;
            ipvt[k - 1] = l + k - m;
            //
            //  Zero pivot implies this column already triangularized.
            //
            if (typeMethods.zabs1(abd[l - 1 + (k - 1) * lda]) == 0.0)
            {
                info = k;
                continue;
            }

            //
            //  Interchange if necessary.
            //
            Complex t;
            if (l != m)
            {
                t = abd[l - 1 + (k - 1) * lda];
                abd[l - 1 + (k - 1) * lda] = abd[m - 1 + (k - 1) * lda];
                abd[m - 1 + (k - 1) * lda] = t;
            }

            //
            //  Compute multipliers.
            //
            t = -new Complex(1.0, 0.0) / abd[m - 1 + (k - 1) * lda];
            BLAS1Z.zscal(lm, t, ref abd, 1, index: +m + (k - 1) * lda);
            //
            //  Row elimination with column indexing.
            //
            ju = Math.Min(Math.Max(ju, mu + ipvt[k - 1]), n);
            int mm = m;

            int j;
            for (j = k + 1; j <= ju; j++)
            {
                l  -= 1;
                mm -= 1;
                t   = abd[l - 1 + (j - 1) * lda];
                if (l != mm)
                {
                    abd[l - 1 + (j - 1) * lda]  = abd[mm - 1 + (j - 1) * lda];
                    abd[mm - 1 + (j - 1) * lda] = t;
                }

                BLAS1Z.zaxpy(lm, t, abd, 1, ref abd, 1, xIndex: +m + (k - 1) * lda, yIndex: +mm + (j - 1) * lda);
            }
        }

        ipvt[n - 1] = n;

        if (typeMethods.zabs1(abd[m - 1 + (n - 1) * lda]) == 0.0)
        {
            info = n;
        }

        return(info);
    }
Exemple #2
0
    public static int zgefa(ref Complex[] a, int lda, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZGEFA factors a complex matrix by Gaussian elimination.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex A[LDA*N]; on input, the matrix to be factored.
    //    On output, an upper triangular matrix and the multipliers which were
    //    used to obtain it.  The factorization can be written A = L*U where
    //    L is a product of permutation and unit lower triangular matrices and
    //    U is upper triangular.
    //
    //    Input, int LDA, the leading dimension of A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, int ZGEFA,
    //    0, normal value.
    //    K, if U(K,K) == 0.0.  This is not an error condition for this
    //    subroutine, but it does indicate that ZGESL or ZGEDI will divide by zero
    //    if called.  Use RCOND in ZGECO for a reliable indication of singularity.
    //
    {
        int k;
        //
        //  Gaussian elimination with partial pivoting.
        //
        int info = 0;

        for (k = 1; k <= n - 1; k++)
        {
            //
            //  Find L = pivot index.
            //
            int l = BLAS1Z.izamax(n - k + 1, a, 1, index: +(k - 1) + (k - 1) * lda) + k - 1;
            ipvt[k - 1] = l;
            //
            //  Zero pivot implies this column already triangularized.
            //
            if (typeMethods.zabs1(a[l - 1 + (k - 1) * lda]) == 0.0)
            {
                info = k;
                continue;
            }

            //
            //  Interchange if necessary.
            //
            Complex t;
            if (l != k)
            {
                t = a[l - 1 + (k - 1) * lda];
                a[l - 1 + (k - 1) * lda] = a[k - 1 + (k - 1) * lda];
                a[k - 1 + (k - 1) * lda] = t;
            }

            //
            //  Compute multipliers
            //
            t = -new Complex(1.0, 0.0) / a[k - 1 + (k - 1) * lda];
            BLAS1Z.zscal(n - k, t, ref a, 1, index: +k + (k - 1) * lda);
            //
            //  Row elimination with column indexing
            //
            int j;
            for (j = k + 1; j <= n; j++)
            {
                t = a[l - 1 + (j - 1) * lda];
                if (l != k)
                {
                    a[l - 1 + (j - 1) * lda] = a[k - 1 + (j - 1) * lda];
                    a[k - 1 + (j - 1) * lda] = t;
                }

                BLAS1Z.zaxpy(n - k, t, a, 1, ref a, 1, xIndex: +k + (k - 1) * lda, yIndex: +k + (j - 1) * lda);
            }
        }

        ipvt[n - 1] = n;

        if (typeMethods.zabs1(a[n - 1 + (n - 1) * lda]) == 0.0)
        {
            info = n;
        }

        return(info);
    }
Exemple #3
0
    public static int zspfa(ref Complex[] ap, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZSPFA factors a complex symmetric matrix stored in packed form.
    //
    //  Discussion:
    //
    //    The factorization is done by elimination with symmetric pivoting.
    //
    //    To solve A*X = B, follow ZSPFA by ZSPSL.
    //
    //    To compute inverse(A)*C, follow ZSPFA by ZSPSL.
    //
    //    To compute determinant(A), follow ZSPFA by ZSPDI.
    //
    //    To compute inverse(A), follow ZSPFA by ZSPDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex AP[N*(N+1)/2]; On input, the packed form of a
    //    symmetric matrix A.  The columns of the upper triangle are stored
    //    sequentially in a one-dimensional array.  On output, a block diagonal
    //    matrix and the multipliers which were used to obtain it stored in
    //    packed form.  The factorization can be written A = U*D*U' where U
    //    is a product of permutation and unit upper triangular matrices,
    //    U' is the transpose of U, and D is block diagonal with 1 by 1 and
    //    2 by 2 blocks.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, int ZSPFA.
    //    0, normal value.
    //    K, if the K-th pivot block is singular.  This is not an error condition
    //    for this subroutine, but it does indicate that ZSPSL or ZSPDI may
    //    divide by zero if called.
    //
    {
        int im = 0;
        //
        //  Initialize.
        //
        //  ALPHA is used in choosing pivot block size.
        //
        double alpha = (1.0 + Math.Sqrt(17.0)) / 8.0;

        int info = 0;
        //
        //  Main loop on K, which goes from N to 1.
        //
        int k  = n;
        int ik = n * (n - 1) / 2;

        for (;;)
        {
            //
            //  Leave the loop if K = 0 or K = 1.
            //
            if (k == 0)
            {
                break;
            }

            if (k == 1)
            {
                ipvt[0] = 1;
                if (typeMethods.zabs1(ap[0]) == 0.0)
                {
                    info = 1;
                }

                break;
            }

            //
            //  This section of code determines the kind of
            //  elimination to be performed.  When it is completed,
            //  KSTEP will be set to the size of the pivot block, and
            //  SWAP will be set to .true. if an interchange is
            //  required.
            //
            int    km1    = k - 1;
            int    kk     = ik + k;
            double absakk = typeMethods.zabs1(ap[kk - 1]);
            //
            //  Determine the largest off-diagonal element in column K.
            //
            int    imax   = BLAS1Z.izamax(k - 1, ap, 1, index: +ik);
            int    imk    = ik + imax;
            double colmax = typeMethods.zabs1(ap[imk - 1]);

            int  kstep;
            bool swap;
            int  j;
            int  imj;
            if (alpha * colmax <= absakk)
            {
                kstep = 1;
                swap  = false;
            }
            //
            //  Determine the largest off-diagonal element in row IMAX.
            //
            else
            {
                double rowmax = 0.0;
                im  = imax * (imax - 1) / 2;
                imj = im + 2 * imax;

                for (j = imax + 1; j <= k; j++)
                {
                    rowmax = Math.Max(rowmax, typeMethods.zabs1(ap[imj - 1]));
                    imj   += j;
                }

                if (imax != 1)
                {
                    int jmax = BLAS1Z.izamax(imax - 1, ap, 1, index: +im);
                    int jmim = jmax + im;
                    rowmax = Math.Max(rowmax, typeMethods.zabs1(ap[jmim - 1]));
                }

                int imim = imax + im;

                if (alpha * rowmax <= typeMethods.zabs1(ap[imim - 1]))
                {
                    kstep = 1;
                    swap  = true;
                }
                else if (alpha * colmax * (colmax / rowmax) <= absakk)
                {
                    kstep = 1;
                    swap  = false;
                }
                else
                {
                    kstep = 2;
                    swap  = imax != km1;
                }
            }

            switch (Math.Max(absakk, colmax))
            {
            //
            //  Column K is zero.  Set INFO and iterate the loop.
            //
            case 0.0:
            {
                ipvt[k - 1] = k;
                info        = k;
                ik         -= k - 1;
                switch (kstep)
                {
                case 2:
                    ik -= k - 2;
                    break;
                }

                k -= kstep;
                continue;
            }
            }

            Complex mulk;
            Complex t;
            int     jk;
            int     jj;
            int     ij;
            if (kstep != 2)
            {
                switch (swap)
                {
                //
                //  1 x 1 pivot block.
                //
                case true:
                {
                    BLAS1Z.zswap(imax, ref ap, 1, ref ap, 1, xIndex: +im, yIndex: +ik);
                    imj = ik + imax;

                    for (jj = imax; jj <= k; jj++)
                    {
                        j  = k + imax - jj;
                        jk = ik + j;

                        t           = ap[jk - 1];
                        ap[jk - 1]  = ap[imj - 1];
                        ap[imj - 1] = t;

                        imj -= j - 1;
                    }

                    break;
                }
                }

                //
                //  Perform the elimination.
                //
                ij = ik - (k - 1);

                for (jj = 1; jj <= km1; jj++)
                {
                    j    = k - jj;
                    jk   = ik + j;
                    mulk = -ap[jk - 1] / ap[kk - 1];
                    t    = mulk;
                    BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ik, yIndex: +ij);
                    ap[jk - 1] = mulk;
                    ij        -= j - 1;
                }

                ipvt[k - 1] = swap switch
                {
                    //
                    //  Set the pivot array.
                    //
                    true => imax,
                    _ => k
                };
            }
            //
            //  2 x 2 pivot block.
            //
            else
            {
                int km1k = ik + k - 1;
                int ikm1 = ik - (k - 1);

                int jkm1;
                switch (swap)
                {
                case true:
                {
                    BLAS1Z.zswap(imax, ref ap, 1, ref ap, 1, xIndex: +im, yIndex: +ikm1);
                    imj = ikm1 + imax;

                    for (jj = imax; jj <= km1; jj++)
                    {
                        j    = km1 + imax - jj;
                        jkm1 = ikm1 + j;

                        t            = ap[jkm1 - 1];
                        ap[jkm1 - 1] = ap[imj - 1];
                        ap[imj - 1]  = t;

                        imj -= j - 1;
                    }

                    t            = ap[km1k - 1];
                    ap[km1k - 1] = ap[imk - 1];
                    ap[imk - 1]  = t;
                    break;
                }
                }

                //
                //  Perform the elimination.
                //
                int km2 = k - 2;

                if (km2 != 0)
                {
                    Complex ak     = ap[kk - 1] / ap[km1k - 1];
                    int     km1km1 = ikm1 + k - 1;
                    Complex akm1   = ap[km1km1 - 1] / ap[km1k - 1];
                    Complex denom  = new Complex(1.0, 0.0) - ak * akm1;
                    ij = ik - (k - 1) - (k - 2);

                    for (jj = 1; jj <= km2; jj++)
                    {
                        j  = km1 - jj;
                        jk = ik + j;
                        Complex bk = ap[jk - 1] / ap[km1k - 1];
                        jkm1 = ikm1 + j;
                        Complex bkm1 = ap[jkm1 - 1] / ap[km1k - 1];
                        mulk = (akm1 * bk - bkm1) / denom;
                        Complex mulkm1 = (ak * bkm1 - bk) / denom;
                        t = mulk;
                        BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ik, yIndex: +ij);
                        t = mulkm1;
                        BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ikm1, yIndex: +ij);
                        ap[jk - 1]   = mulk;
                        ap[jkm1 - 1] = mulkm1;
                        ij          -= j - 1;
                    }
                }

                ipvt[k - 1] = swap switch
                {
                    //
                    //  Set the pivot array.
                    //
                    true => - imax,
                    _ => 1 - k
                };

                ipvt[k - 2] = ipvt[k - 1];
            }

            ik -= k - 1;

            switch (kstep)
            {
            case 2:
                ik -= k - 2;
                break;
            }

            k -= kstep;
        }

        return(info);
    }
}
Exemple #4
0
    public static int zhifa(ref Complex[] a, int lda, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZHIFA factors a complex hermitian matrix.
    //
    //  Discussion:
    //
    //    ZHIFA performs the factoring by elimination with symmetric pivoting.
    //
    //    To solve A*X = B, follow ZHIFA by ZHISL.
    //
    //    To compute inverse(A)*C, follow ZHIFA by ZHISL.
    //
    //    To compute determinant(A), follow ZHIFA by ZHIDI.
    //
    //    To compute inertia(A), follow ZHIFA by ZHIDI.
    //
    //    To compute inverse(A), follow ZHIFA by ZHIDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, complex <double> A[LDA*N]; on input, the hermitian matrix to be
    //    factored.  On output, a block diagonal matrix and the multipliers which
    //    were used to obtain it.  The factorization can be written
    //    A = U*D*hermitian(U) where U is a product of permutation and unit upper
    //    triangular matrices, hermitian(U) is the Complex.Conjugateugate transpose of U, and
    //    D is block diagonal with 1 by 1 and 2 by 2 blocks.  Only the diagonal
    //    and upper triangle are used.
    //
    //    Input, int LDA, the leading dimension of A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, int ZHIFA.
    //    0, normal value.
    //    K, if the K-th pivot block is singular.  This is not an error condition
    //    for this subroutine, but it does indicate that ZHISL or ZHIDI may
    //    divide by zero if called.
    //
    {
        //
        //  Initialize.
        //
        //  ALPHA is used in choosing pivot block size.
        //
        double alpha = (1.0 + Math.Sqrt(17.0)) / 8.0;

        int info = 0;
        //
        //  Main loop on K, which goes from N to 1.
        //
        int k = n;

        for (;;)
        {
            //
            //  Leave the loop if K = 0 or K = 1.
            //
            if (k == 0)
            {
                break;
            }

            if (k == 1)
            {
                ipvt[0] = 1;
                if (typeMethods.zabs1(a[0 + 0 * lda]) == 0.0)
                {
                    info = 1;
                }

                break;
            }

            //
            //  This section of code determines the kind of
            //  elimination to be performed.  When it is completed,
            //  KSTEP will be set to the size of the pivot block, and
            //  SWAP will be set to .true. if an interchange is
            //  required.
            //
            int    km1    = k - 1;
            double absakk = typeMethods.zabs1(a[k - 1 + (k - 1) * lda]);
            //
            //  Determine the largest off-diagonal element in column K.
            //
            int    imax   = BLAS1Z.izamax(k - 1, a, 1, index: +0 + (k - 1) * lda);
            double colmax = typeMethods.zabs1(a[imax - 1 + (k - 1) * lda]);

            int  j;
            int  kstep;
            bool swap;
            if (alpha * colmax <= absakk)
            {
                kstep = 1;
                swap  = false;
            }
            else
            {
                //
                //  Determine the largest off-diagonal element in row IMAX.
                //
                double rowmax = 0.0;
                for (j = imax + 1; j <= k; j++)
                {
                    rowmax = Math.Max(rowmax, typeMethods.zabs1(a[imax - 1 + (j - 1) * lda]));
                }

                if (imax != 1)
                {
                    int jmax = BLAS1Z.izamax(imax - 1, a, 1, index: +0 + (imax - 1) * lda);
                    rowmax = Math.Max(rowmax, typeMethods.zabs1(a[jmax - 1 + (imax - 1) * lda]));
                }

                if (alpha * rowmax <= typeMethods.zabs1(a[imax - 1 + (imax - 1) * lda]))
                {
                    kstep = 1;
                    swap  = true;
                }
                else if (alpha * colmax * (colmax / rowmax) <= absakk)
                {
                    kstep = 1;
                    swap  = false;
                }
                else
                {
                    kstep = 2;
                    swap  = imax != km1;
                }
            }

            switch (Math.Max(absakk, colmax))
            {
            //
            //  Column K is zero.  Set INFO and iterate the loop.
            //
            case 0.0:
                ipvt[k - 1] = k;
                info        = k;
                k          -= kstep;
                continue;
            }

            int     jj;
            Complex mulk;
            Complex t;
            if (kstep != 2)
            {
                switch (swap)
                {
                //
                //  1 x 1 pivot block.
                //
                case true:
                {
                    BLAS1Z.zswap(imax, ref a, 1, ref a, 1, xIndex: +0 + (imax - 1) * lda, yIndex: +0 + (k - 1) * lda);

                    for (jj = imax; jj <= k; jj++)
                    {
                        j = k + imax - jj;
                        t = Complex.Conjugate(a[j - 1 + (k - 1) * lda]);
                        a[j - 1 + (k - 1) * lda]    = Complex.Conjugate(a[imax - 1 + (j - 1) * lda]);
                        a[imax - 1 + (j - 1) * lda] = t;
                    }

                    break;
                }
                }

                //
                //  Perform the elimination.
                //
                for (jj = 1; jj <= km1; jj++)
                {
                    j    = k - jj;
                    mulk = -a[j - 1 + (k - 1) * lda] / a[k - 1 + (k - 1) * lda];
                    t    = Complex.Conjugate(mulk);
                    BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (j - 1) * lda);
                    a[j - 1 + (j - 1) * lda] = new Complex(a[j - 1 + (j - 1) * lda].Real, 0.0);
                    a[j - 1 + (k - 1) * lda] = mulk;
                }

                ipvt[k - 1] = swap switch
                {
                    true => imax,
                    //
                    //  Set the pivot array.
                    //
                    _ => k
                };
            }
            else
            {
                switch (swap)
                {
                //
                //  2 x 2 pivot block.
                //
                case true:
                {
                    BLAS1Z.zswap(imax, ref a, 1, ref a, 1, xIndex: +0 + (imax - 1) * lda, yIndex: +0 + (k - 2) * lda);

                    for (jj = imax; jj <= km1; jj++)
                    {
                        j = km1 + imax - jj;

                        t = Complex.Conjugate(a[j - 1 + (k - 2) * lda]);
                        a[j - 1 + (k - 2) * lda]    = Complex.Conjugate(a[imax - 1 + (j - 1) * lda]);
                        a[imax - 1 + (j - 1) * lda] = t;
                    }

                    t = a[k - 2 + (k - 1) * lda];
                    a[k - 2 + (k - 1) * lda]    = a[imax - 1 + (k - 1) * lda];
                    a[imax - 1 + (k - 1) * lda] = t;
                    break;
                }
                }

                switch (k - 2)
                {
                //
                //  Perform the elimination.
                //
                case > 0:
                {
                    Complex ak    = a[k - 1 + (k - 1) * lda] / a[k - 2 + (k - 1) * lda];
                    Complex akm1  = a[k - 2 + (k - 2) * lda] / Complex.Conjugate(a[k - 2 + (k - 1) * lda]);
                    Complex denom = new Complex(1.0, 0.0) - ak * akm1;

                    for (jj = 1; jj <= k - 2; jj++)
                    {
                        j = km1 - jj;
                        Complex bk   = a[j - 1 + (k - 1) * lda] / a[k - 2 + (k - 1) * lda];
                        Complex bkm1 = a[j - 1 + (k - 2) * lda] / Complex.Conjugate(a[k - 2 + (k - 1) * lda]);
                        mulk = (akm1 * bk - bkm1) / denom;
                        Complex mulkm1 = (ak * bkm1 - bk) / denom;
                        t = Complex.Conjugate(mulk);
                        BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (j - 1) * lda);
                        t = Complex.Conjugate(mulkm1);
                        BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 2) * lda, yIndex: +0 + (j - 1) * lda);
                        a[j - 1 + (k - 1) * lda] = mulk;
                        a[j - 1 + (k - 2) * lda] = mulkm1;
                        a[j - 1 + (j - 1) * lda] = new Complex(a[j - 1 + (j - 1) * lda].Real, 0.0);
                    }

                    break;
                }
                }

                ipvt[k - 1] = swap switch
                {
                    //
                    //  Set the pivot array.
                    //
                    true => - imax,
                    _ => 1 - k
                };

                ipvt[k - 2] = ipvt[k - 1];
            }

            k -= kstep;
        }

        return(info);
    }
}