Exemple #1
0
        public static void Run(CostFunction f, int max_iterations = 200)
        {
            BFGS s = new BFGS();


            double[] x_0 = f.CreateRandomSolution();

            s.SolutionUpdated += (best_solution, step) =>
            {
                Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
            };

            s.Minimize(x_0, f, max_iterations);
        }
Exemple #2
0
        static void Main(string[] args)
        {
            RandomGenerator generator = new RandomGenerator();

            //RandomGenerator generator = new RandomGenerator(3);
            ReadData(@"d:\Projects\HeroesModel\HeroesModel\data.csv");
            //GenerateModelData(generator, 1000);

            data.Sort((x, y) =>
            {
                if (x.red != y.red)
                {
                    return(x.red.CompareTo(y.red));
                }
                return(x.blue.CompareTo(y.blue));
            });
            PrintData();

            BFGS bfgs = new BFGS(TOTAL_PARAMS + 1 + TOWN_TYPES * TOWN_TYPES * 4, LogLikelyhood, LogLikelyHoodGradient);
            //BFGS bfgs = new BFGS(TOTAL_PARAMS + 1, LogLikelyhood, LogLikelyHoodGradient);
            //bfgs.FunctionTolerance = EPS;

            DateTime         startTime    = DateTime.Now;
            ManualResetEvent interrupted  = new ManualResetEvent(false);
            Thread           reportThread = new Thread(() =>
            {
                while (!interrupted.WaitOne(10000))
                {
                    Console.WriteLine($"Time elapsed {(DateTime.Now - startTime)}, iterations complete {bfgs.IterationsDone}");
                }
            });

            reportThread.Start();

            //bfgs.Minimize(new Vector(TOTAL_PARAMS, 0.01));
            //RandomGenerator generator = new RandomGenerator(1);
            //RandomGenerator generator = new RandomGenerator(1);
            Normal normal = new Normal(generator, 0, 0.1);

            bfgs.Minimize(normal.Sample(TOTAL_PARAMS + 1 + TOWN_TYPES * TOWN_TYPES * 4));
            //bfgs.Minimize(normal.Sample(TOTAL_PARAMS + 1));

            interrupted.Set();
            reportThread.Join();

            Vector result = bfgs.MinimumPoint;
            double min    = -LogLikelyhood(result);

            Console.WriteLine($"Converged. Time elapsed {(DateTime.Now - startTime)}. Iterations: {bfgs.IterationsDone}");


            for (double money = -0.5; money <= 0.5; money += 0.1)
            {
                Console.WriteLine($"Red money {(money + 1) * 10000}");
                PrintProbabilities(result, money);
            }

            PrintCoeficients(result);

            EstimateInputData(result, @"d:\Projects\HeroesModel\display\data.js");

            PrintCoefficients(result, @"d:\Projects\HeroesModel\display\coefficients.js");

            //GaussKronrodSingular integration = new GaussKronrodSingular();
            //integration.Integrate(x => ConditionalDensity(x, 0, 1, 0, 1), Double.NegativeInfinity, Double.PositiveInfinity, 100);
            //Console.WriteLine(integration.Result);
        }