/// <summary> /// Create a SOM. /// </summary> /// /// <param name="architecture">The architecture string.</param> /// <param name="input">The input count.</param> /// <param name="output">The output count.</param> /// <returns>The newly created SOM.</returns> public IMLMethod Create(String architecture, int input, int output) { IList <String> layers = ArchitectureParse.ParseLayers(architecture); if (layers.Count != 2) { throw new EncogError( "SOM's must have exactly two elements, separated by ->."); } ArchitectureLayer inputLayer = ArchitectureParse.ParseLayer( layers[0], input); ArchitectureLayer outputLayer = ArchitectureParse.ParseLayer( layers[1], output); int inputCount = inputLayer.Count; int outputCount = outputLayer.Count; var pattern = new SOMPattern { InputNeurons = inputCount, OutputNeurons = outputCount }; return(pattern.Generate()); }
/// <summary> /// Create a RBF network. /// </summary> /// /// <param name="architecture">THe architecture string to use.</param> /// <param name="input">The input count.</param> /// <param name="output">The output count.</param> /// <returns>The RBF network.</returns> public IMLMethod Create(String architecture, int input, int output) { IList <String> layers = ArchitectureParse.ParseLayers(architecture); if (layers.Count != MaxLayers) { throw new EncogError( "RBF Networks must have exactly three elements, " + "separated by ->."); } ArchitectureLayer inputLayer = ArchitectureParse.ParseLayer( layers[0], input); ArchitectureLayer rbfLayer = ArchitectureParse.ParseLayer( layers[1], -1); ArchitectureLayer outputLayer = ArchitectureParse.ParseLayer( layers[2], output); int inputCount = inputLayer.Count; int outputCount = outputLayer.Count; RBFEnum t; if (rbfLayer.Name.Equals("Gaussian", StringComparison.InvariantCultureIgnoreCase)) { t = RBFEnum.Gaussian; } else if (rbfLayer.Name.Equals("Multiquadric", StringComparison.InvariantCultureIgnoreCase)) { t = RBFEnum.Multiquadric; } else if (rbfLayer.Name.Equals("InverseMultiquadric", StringComparison.InvariantCultureIgnoreCase)) { t = RBFEnum.InverseMultiquadric; } else if (rbfLayer.Name.Equals("MexicanHat", StringComparison.InvariantCultureIgnoreCase)) { t = RBFEnum.MexicanHat; } else { throw new NeuralNetworkError("Unknown RBF: " + rbfLayer.Name); } var holder = new ParamsHolder(rbfLayer.Params); int rbfCount = holder.GetInt("C", true, 0); var result = new RBFNetwork(inputCount, rbfCount, outputCount, t); return(result); }
/// <summary> /// Create a feed forward network. /// </summary> /// /// <param name="architecture">The architecture string to use.</param> /// <param name="input">The input count.</param> /// <param name="output">The output count.</param> /// <returns>The feedforward network.</returns> public IMLMethod Create(String architecture, int input, int output) { var result = new BasicNetwork(); IList <String> layers = ArchitectureParse.ParseLayers(architecture); IActivationFunction af = new ActivationLinear(); int questionPhase = 0; foreach (String layerStr in layers) { // determine default int defaultCount = questionPhase == 0 ? input : output; ArchitectureLayer layer = ArchitectureParse.ParseLayer( layerStr, defaultCount); bool bias = layer.Bias; String part = layer.Name; part = part != null?part.Trim() : ""; IActivationFunction lookup = _factory.Create(part); if (lookup != null) { af = lookup; } else { if (layer.UsedDefault) { questionPhase++; if (questionPhase > 2) { throw new EncogError("Only two ?'s may be used."); } } if (layer.Count == 0) { throw new EncogError("Unknown architecture element: " + architecture + ", can't parse: " + part); } result.AddLayer(new BasicLayer(af, bias, layer.Count)); } } result.Structure.FinalizeStructure(); result.Reset(); return(result); }
/// <summary> /// Create a PNN network. /// </summary> /// /// <param name="architecture">THe architecture string to use.</param> /// <param name="input">The input count.</param> /// <param name="output">The output count.</param> /// <returns>The RBF network.</returns> public IMLMethod Create(String architecture, int input, int output) { IList <String> layers = ArchitectureParse.ParseLayers(architecture); if (layers.Count != MaxLayers) { throw new EncogError( "PNN Networks must have exactly three elements, " + "separated by ->."); } ArchitectureLayer inputLayer = ArchitectureParse.ParseLayer( layers[0], input); ArchitectureLayer pnnLayer = ArchitectureParse.ParseLayer( layers[1], -1); ArchitectureLayer outputLayer = ArchitectureParse.ParseLayer( layers[2], output); int inputCount = inputLayer.Count; int outputCount = outputLayer.Count; PNNKernelType kernel; PNNOutputMode outmodel; if (pnnLayer.Name.Equals("c", StringComparison.InvariantCultureIgnoreCase)) { outmodel = PNNOutputMode.Classification; } else if (pnnLayer.Name.Equals("r", StringComparison.InvariantCultureIgnoreCase)) { outmodel = PNNOutputMode.Regression; } else if (pnnLayer.Name.Equals("u", StringComparison.InvariantCultureIgnoreCase)) { outmodel = PNNOutputMode.Unsupervised; } else { throw new NeuralNetworkError("Unknown model: " + pnnLayer.Name); } var holder = new ParamsHolder(pnnLayer.Params); String kernelStr = holder.GetString("KERNEL", false, "gaussian"); if (kernelStr.Equals("gaussian", StringComparison.InvariantCultureIgnoreCase)) { kernel = PNNKernelType.Gaussian; } else if (kernelStr.Equals("reciprocal", StringComparison.InvariantCultureIgnoreCase)) { kernel = PNNKernelType.Reciprocal; } else { throw new NeuralNetworkError("Unknown kernel: " + kernelStr); } var result = new BasicPNN(kernel, outmodel, inputCount, outputCount); return(result); }
/// <summary> /// Create the SVM. /// </summary> /// /// <param name="architecture">The architecture string.</param> /// <param name="input">The input count.</param> /// <param name="output">The output count.</param> /// <returns>The newly created SVM.</returns> public IMLMethod Create(String architecture, int input, int output) { IList <String> layers = ArchitectureParse.ParseLayers(architecture); if (layers.Count != MAX_LAYERS) { throw new EncogError( "SVM's must have exactly three elements, separated by ->."); } ArchitectureLayer inputLayer = ArchitectureParse.ParseLayer( layers[0], input); ArchitectureLayer paramsLayer = ArchitectureParse.ParseLayer( layers[1], input); ArchitectureLayer outputLayer = ArchitectureParse.ParseLayer( layers[2], output); String name = paramsLayer.Name; String kernelStr = paramsLayer.Params.ContainsKey("KERNEL") ? paramsLayer.Params["KERNEL"] : null; String svmTypeStr = paramsLayer.Params.ContainsKey("TYPE") ? paramsLayer.Params["TYPE"] : null; SVMType svmType = SVMType.NewSupportVectorClassification; KernelType kernelType = KernelType.RadialBasisFunction; bool useNew = true; if (svmTypeStr == null) { useNew = true; } else if (svmTypeStr.Equals("NEW", StringComparison.InvariantCultureIgnoreCase)) { useNew = true; } else if (svmTypeStr.Equals("OLD", StringComparison.InvariantCultureIgnoreCase)) { useNew = false; } else { throw new EncogError("Unsupported type: " + svmTypeStr + ", must be NEW or OLD."); } if (name.Equals("C", StringComparison.InvariantCultureIgnoreCase)) { if (useNew) { svmType = SVMType.NewSupportVectorClassification; } else { svmType = SVMType.SupportVectorClassification; } } else if (name.Equals("R", StringComparison.InvariantCultureIgnoreCase)) { if (useNew) { svmType = SVMType.NewSupportVectorRegression; } else { svmType = SVMType.EpsilonSupportVectorRegression; } } else { throw new EncogError("Unsupported mode: " + name + ", must be C for classify or R for regression."); } if (kernelStr == null) { kernelType = KernelType.RadialBasisFunction; } else if ("linear".Equals(kernelStr, StringComparison.InvariantCultureIgnoreCase)) { kernelType = KernelType.Linear; } else if ("poly".Equals(kernelStr, StringComparison.InvariantCultureIgnoreCase)) { kernelType = KernelType.Poly; } else if ("precomputed".Equals(kernelStr, StringComparison.InvariantCultureIgnoreCase)) { kernelType = KernelType.Precomputed; } else if ("rbf".Equals(kernelStr, StringComparison.InvariantCultureIgnoreCase)) { kernelType = KernelType.RadialBasisFunction; } else if ("sigmoid".Equals(kernelStr, StringComparison.InvariantCultureIgnoreCase)) { kernelType = KernelType.Sigmoid; } else { throw new EncogError("Unsupported kernel: " + kernelStr + ", must be linear,poly,precomputed,rbf or sigmoid."); } int inputCount = inputLayer.Count; int outputCount = outputLayer.Count; if (outputCount != 1) { throw new EncogError("SVM can only have an output size of 1."); } var result = new SupportVectorMachine(inputCount, svmType, kernelType); return(result); }