public static IMLDataSet LoadAndNormalizeData(FileInfo fileInfo, AnalystGoal problemType, NormalizationAction normalizationType, bool randomize = true) { var analyst = new EncogAnalyst(); var wizard = new AnalystWizard(analyst); wizard.Goal = problemType; wizard.Wizard(fileInfo, true, AnalystFileFormat.DecpntComma); var fields = analyst.Script.Normalize.NormalizedFields; if (problemType == AnalystGoal.Classification) fields[fields.Count - 1].Action = normalizationType; var norm = new AnalystNormalizeCSV(); norm.Analyze(fileInfo, true, CSVFormat.DecimalPoint, analyst); var normalizedDataFileInfo = new FileInfo("temp/temp.csv"); norm.Normalize(normalizedDataFileInfo); var inputNeurons = fields.Count - 1; int outputNeurons; if (problemType == AnalystGoal.Classification) outputNeurons = fields.Last().Classes.Count - (normalizationType == NormalizationAction.Equilateral ? 1 : 0); else outputNeurons = fields.Count - inputNeurons; var result = CSVHelper.LoadCSVToDataSet(normalizedDataFileInfo, inputNeurons, outputNeurons, randomize); normalizedDataFileInfo.Delete(); return result; }
public void Wizard(AnalystGoal goal, WizardMethodType methodType, bool headers) { EncogAnalyst.MaxIteration = MaxIterations; var wiz = new AnalystWizard(EncogAnalyst) { Goal = goal, MethodType = methodType, EvidenceSegements = 3 }; wiz.Wizard(_rawFile, headers, FileFormat); EncogAnalyst.Save(_analystFile); EncogAnalyst.Load(_analystFile); }
/// <summary> /// Set a property. /// </summary> /// <param name="name">The name.</param> /// <param name="v">The value.</param> public void SetProperty(String name, AnalystGoal v) { switch (v) { case AnalystGoal.Classification: _data[name] = "classification"; break; case AnalystGoal.Regression: _data[name] = "regression"; break; default: _data[name] = ""; break; } }
/// <summary> /// Construct the analyst wizard. /// </summary> /// /// <param name="theAnalyst">The analyst to use.</param> public AnalystWizard(EncogAnalyst theAnalyst) { _directClassification = false; _taskSegregate = true; _taskRandomize = true; _taskNormalize = true; _taskBalance = false; _taskCluster = true; _range = NormalizeRange.NegOne2One; _analyst = theAnalyst; _script = _analyst.Script; _methodType = WizardMethodType.FeedForward; _targetField = ""; _goal = AnalystGoal.Classification; _leadWindowSize = 0; _lagWindowSize = 0; _includeTargetField = false; _missing = new DiscardMissing(); }
public AnalystWizard(EncogAnalyst theAnalyst) { if (15 == 0) { return; } this._x7047063a9bee4054 = true; Label_0071: this._xc24b506a94383a44 = false; this._x34231b3d9a1591be = true; this._x9b10ace6509508c0 = NormalizeRange.NegOne2One; this._x554f16462d8d4675 = theAnalyst; this._x594135906c55045c = this._x554f16462d8d4675.Script; this._xa24f4208aa2278f4 = WizardMethodType.FeedForward; this._x0768e2edc97194de = ""; if (8 != 0) { this._x29c8e5bee3cb25f8 = AnalystGoal.Classification; this._xb6540cd895237850 = 0; if (1 != 0) { this._x654428e3563552e3 = 0; this._x0236ea04f9fa4aaa = false; this._x771edacf1be2c386 = new DiscardMissing(); } else { goto Label_0071; } } }
/// <summary> /// Construct the analyst wizard. /// </summary> /// <param name="theAnalyst">The analyst to use.</param> public AnalystWizard(EncogAnalyst theAnalyst) { _directClassification = false; _taskSegregate = true; _taskRandomize = true; _taskNormalize = true; _taskBalance = false; _taskCluster = true; _range = NormalizeRange.NegOne2One; _analyst = theAnalyst; _script = _analyst.Script; _methodType = WizardMethodType.FeedForward; TargetFieldName = ""; _goal = AnalystGoal.Classification; _leadWindowSize = 0; _lagWindowSize = 0; _includeTargetField = false; _missing = new DiscardMissing(); MaxError = DefaultTrainError; NaiveBayes = false; }
public void Wizard(AnalystGoal goal, WizardMethodType methodType, bool headers) { EncogAnalyst.MaxIteration = MaxIterations; var wiz = new AnalystWizard(EncogAnalyst) {Goal = goal, MethodType = methodType, EvidenceSegements = 3}; wiz.Wizard(_rawFile, headers, FileFormat); EncogAnalyst.Save(_analystFile); EncogAnalyst.Load(_analystFile); }
public void SetProperty(string name, AnalystGoal v) { switch (v) { case AnalystGoal.Regression: this._x4a3f0a05c02f235f[name] = "regression"; return; case AnalystGoal.Classification: this._x4a3f0a05c02f235f[name] = "classification"; return; } this._x4a3f0a05c02f235f[name] = ""; }