Example #1
0
        public void CreateResilientPropagationAlgorithm(AnnBuild annComp, ResilientPropagation rprop)
        {
            errorTarget = annComp.ErrorTarget;
            network.InstantiateResilientPropagationAlgorithm(
                errorTarget, annComp.MaxEpochs, rprop.MaxUpdateValue, rprop.MinUpdateValue, rprop.GrowthFactor, rprop.DecreaseFactor);

            network.BuildStatsListener();
        }
Example #2
0
        public void CreateBackPropagationTrainingAlgorithm(AnnBuild annComp, BackPropagation prop)
        {
            errorTarget = annComp.ErrorTarget;
            network.InstantiateBackPropagationAlgorithm(
                errorTarget, annComp.MaxEpochs, prop.LearningRate, prop.Beta);

            network.BuildStatsListener();
        }
Example #3
0
 public void SetData(AnnBuild obj)
 {
     this.Bias                = obj.Bias;
     this.ErrorTarget         = obj.ErrorTarget;
     this.HiddenLayers        = obj.HiddenLayers;
     this.HiddenUnits         = obj.HiddenUnits;
     this.InputUnits          = obj.InputUnits;
     this.LearningMode        = obj.LearningMode;
     this.MaxEpochs           = obj.MaxEpochs;
     this.ActivationNeuroMode = obj.ActivationNeuroMode;
     this.OutputUnits         = obj.OutputUnits;
     this.SynInitMode         = obj.SynInitMode;
 }
Example #4
0
        public void Build(AnnBuild AnnBuilding)
        {
            if (network != null)
            {
                network.Destroy();
            }

            network = new Mlp(
                AnnBuilding.InputUnits,
                AnnBuilding.HiddenUnits,
                AnnBuilding.HiddenLayers,
                AnnBuilding.OutputUnits,
                AnnBuilding.Bias,
                AnnBuilding.ActivationNeuroMode
                );

            synInitMode = AnnBuilding.SynInitMode;

            network.Instantiate();

            status = NetworkStatus.UNTRAINED;

            logger.InfoFormat("Building neural network classifier: {0}", this.ToString());
        }