Example #1
0
        // Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
        // penalty to them.
        public static int ApplyMaskPenaltyRule2(ByteMatrix matrix)
        {
            int penalty = 0;

            byte[][] array  = matrix.GetArray();
            int      width  = matrix.GetWidth();
            int      height = matrix.GetHeight();

            for (int y = 0; y < height - 1; ++y)
            {
                for (int x = 0; x < width - 1; ++x)
                {
                    int value = array[y][x];
                    if (value == array[y][x + 1] && value == array[y + 1][x] && value == array[y + 1][x + 1])
                    {
                        penalty += 3;
                    }
                }
            }
            return(penalty);
        }
Example #2
0
        // Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
        // penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance. Examples:
        // -   0% => 100
        // -  40% =>  20
        // -  45% =>  10
        // -  50% =>   0
        // -  55% =>  10
        // -  55% =>  20
        // - 100% => 100
        public static int ApplyMaskPenaltyRule4(ByteMatrix matrix)
        {
            int numDarkCells = 0;

            byte[][] array  = matrix.GetArray();
            int      width  = matrix.GetWidth();
            int      height = matrix.GetHeight();

            for (int y = 0; y < height; ++y)
            {
                for (int x = 0; x < width; ++x)
                {
                    if (array[y][x] == 1)
                    {
                        numDarkCells += 1;
                    }
                }
            }
            int    numTotalCells = matrix.GetHeight() * matrix.GetWidth();
            double darkRatio     = (double)numDarkCells / numTotalCells;

            return(Math.Abs((int)(darkRatio * 100 - 50)) / 5 * 10);
        }
Example #3
0
 /// <summary>Set the byte-matrix</summary>
 /// <param name="value">the new byte-matrix</param>
 public void SetMatrix(ByteMatrix value)
 {
     matrix = value;
 }
Example #4
0
 // Apply mask penalty rule 1 and return the penalty. Find repetitive cells with the same color and
 // give penalty to them. Example: 00000 or 11111.
 public static int ApplyMaskPenaltyRule1(ByteMatrix matrix)
 {
     return(ApplyMaskPenaltyRule1Internal(matrix, true) + ApplyMaskPenaltyRule1Internal(matrix, false));
 }
Example #5
0
        // Note that the input matrix uses 0 == white, 1 == black, while the output matrix uses
        // 0 == black, 255 == white (i.e. an 8 bit greyscale bitmap).
        private static ByteMatrix RenderResult(QRCode code, int width, int height)
        {
            ByteMatrix input        = code.GetMatrix();
            int        inputWidth   = input.GetWidth();
            int        inputHeight  = input.GetHeight();
            int        qrWidth      = inputWidth + (QUIET_ZONE_SIZE << 1);
            int        qrHeight     = inputHeight + (QUIET_ZONE_SIZE << 1);
            int        outputWidth  = Math.Max(width, qrWidth);
            int        outputHeight = Math.Max(height, qrHeight);
            int        multiple     = Math.Min(outputWidth / qrWidth, outputHeight / qrHeight);
            // Padding includes both the quiet zone and the extra white pixels to accommodate the requested
            // dimensions. For example, if input is 25x25 the QR will be 33x33 including the quiet zone.
            // If the requested size is 200x160, the multiple will be 4, for a QR of 132x132. These will
            // handle all the padding from 100x100 (the actual QR) up to 200x160.
            int        leftPadding = (outputWidth - (inputWidth * multiple)) / 2;
            int        topPadding  = (outputHeight - (inputHeight * multiple)) / 2;
            ByteMatrix output      = new ByteMatrix(outputWidth, outputHeight);

            byte[][] outputArray = output.GetArray();
            // We could be tricky and use the first row in each set of multiple as the temporary storage,
            // instead of allocating this separate array.
            byte[] row = new byte[outputWidth];
            // 1. Write the white lines at the top
            for (int y = 0; y < topPadding; y++)
            {
                SetRowColor(outputArray[y], (byte)255);
            }
            // 2. Expand the QR image to the multiple
            byte[][] inputArray = input.GetArray();
            for (int y = 0; y < inputHeight; y++)
            {
                // a. Write the white pixels at the left of each row
                for (int x = 0; x < leftPadding; x++)
                {
                    row[x] = (byte)255;
                }
                // b. Write the contents of this row of the barcode
                int offset = leftPadding;
                for (int x = 0; x < inputWidth; x++)
                {
                    byte value = (inputArray[y][x] == 1) ? (byte)0 : (byte)255;
                    for (int z = 0; z < multiple; z++)
                    {
                        row[offset + z] = value;
                    }
                    offset += multiple;
                }
                // c. Write the white pixels at the right of each row
                offset = leftPadding + (inputWidth * multiple);
                for (int x = offset; x < outputWidth; x++)
                {
                    row[x] = (byte)255;
                }
                // d. Write the completed row multiple times
                offset = topPadding + (y * multiple);
                for (int z = 0; z < multiple; z++)
                {
                    Array.Copy(row, 0, outputArray[offset + z], 0, outputWidth);
                }
            }
            // 3. Write the white lines at the bottom
            int offset_1 = topPadding + (inputHeight * multiple);

            for (int y = offset_1; y < outputHeight; y++)
            {
                SetRowColor(outputArray[y], (byte)255);
            }
            return(output);
        }
Example #6
0
        /// <exception cref="iText.Barcodes.Qrcode.WriterException"/>
        private static int ChooseMaskPattern(BitVector bits, ErrorCorrectionLevel ecLevel, int version, ByteMatrix
                                             matrix)
        {
            int minPenalty = int.MaxValue;
            // Lower penalty is better.
            int bestMaskPattern = -1;

            // We try all mask patterns to choose the best one.
            for (int maskPattern = 0; maskPattern < QRCode.NUM_MASK_PATTERNS; maskPattern++)
            {
                MatrixUtil.BuildMatrix(bits, ecLevel, version, maskPattern, matrix);
                int penalty = CalculateMaskPenalty(matrix);
                if (penalty < minPenalty)
                {
                    minPenalty      = penalty;
                    bestMaskPattern = maskPattern;
                }
            }
            return(bestMaskPattern);
        }
Example #7
0
        /// <summary>Encode "bytes" with the error correction level "ecLevel".</summary>
        /// <remarks>
        /// Encode "bytes" with the error correction level "ecLevel". The encoding mode will be chosen
        /// internally by chooseMode(). On success, store the result in "qrCode".
        /// <p>
        /// We recommend you to use QRCode.EC_LEVEL_L (the lowest level) for
        /// "getECLevel" since our primary use is to show QR code on desktop screens. We don't need very
        /// strong error correction for this purpose.
        /// <p>
        /// Note that there is no way to encode bytes in MODE_KANJI. We might want to add EncodeWithMode()
        /// with which clients can specify the encoding mode. For now, we don't need the functionality.
        /// </remarks>
        /// <param name="content">String to encode</param>
        /// <param name="ecLevel">Error-correction level to use</param>
        /// <param name="hints">Optional Map containing  encoding and suggested minimum version to use</param>
        /// <param name="qrCode">QR code to store the result in</param>
        /// <exception cref="WriterException"/>
        /// <exception cref="iText.Barcodes.Qrcode.WriterException"/>
        public static void Encode(String content, ErrorCorrectionLevel ecLevel, IDictionary <EncodeHintType, Object
                                                                                             > hints, QRCode qrCode)
        {
            String encoding = hints == null ? null : (String)hints.Get(EncodeHintType.CHARACTER_SET);

            if (encoding == null)
            {
                encoding = DEFAULT_BYTE_MODE_ENCODING;
            }
            int desiredMinVersion = (hints == null || hints.Get(EncodeHintType.MIN_VERSION_NR) == null) ? 1 : (int)hints
                                    .Get(EncodeHintType.MIN_VERSION_NR);

            //Check if desired level is within bounds of [1,40]
            if (desiredMinVersion < 1)
            {
                desiredMinVersion = 1;
            }
            if (desiredMinVersion > 40)
            {
                desiredMinVersion = 40;
            }
            // Step 1: Choose the mode (encoding).
            Mode mode = ChooseMode(content, encoding);
            // Step 2: Append "bytes" into "dataBits" in appropriate encoding.
            BitVector dataBits = new BitVector();

            AppendBytes(content, mode, dataBits, encoding);
            // Step 3: Initialize QR code that can contain "dataBits".
            int numInputBytes = dataBits.SizeInBytes();

            InitQRCode(numInputBytes, ecLevel, desiredMinVersion, mode, qrCode);
            // Step 4: Build another bit vector that contains header and data.
            BitVector headerAndDataBits = new BitVector();

            // Step 4.5: Append ECI message if applicable
            if (mode == Mode.BYTE && !DEFAULT_BYTE_MODE_ENCODING.Equals(encoding))
            {
                CharacterSetECI eci = CharacterSetECI.GetCharacterSetECIByName(encoding);
                if (eci != null)
                {
                    AppendECI(eci, headerAndDataBits);
                }
            }
            AppendModeInfo(mode, headerAndDataBits);
            int numLetters = mode.Equals(Mode.BYTE) ? dataBits.SizeInBytes() : content.Length;

            AppendLengthInfo(numLetters, qrCode.GetVersion(), mode, headerAndDataBits);
            headerAndDataBits.AppendBitVector(dataBits);
            // Step 5: Terminate the bits properly.
            TerminateBits(qrCode.GetNumDataBytes(), headerAndDataBits);
            // Step 6: Interleave data bits with error correction code.
            BitVector finalBits = new BitVector();

            InterleaveWithECBytes(headerAndDataBits, qrCode.GetNumTotalBytes(), qrCode.GetNumDataBytes(), qrCode.GetNumRSBlocks
                                      (), finalBits);
            // Step 7: Choose the mask pattern and set to "qrCode".
            ByteMatrix matrix = new ByteMatrix(qrCode.GetMatrixWidth(), qrCode.GetMatrixWidth());

            qrCode.SetMaskPattern(ChooseMaskPattern(finalBits, qrCode.GetECLevel(), qrCode.GetVersion(), matrix));
            // Step 8.  Build the matrix and set it to "qrCode".
            MatrixUtil.BuildMatrix(finalBits, qrCode.GetECLevel(), qrCode.GetVersion(), qrCode.GetMaskPattern(), matrix
                                   );
            qrCode.SetMatrix(matrix);
            // Step 9.  Make sure we have a valid QR Code.
            if (!qrCode.IsValid())
            {
                throw new WriterException("Invalid QR code: " + qrCode.ToString());
            }
        }