Example #1
0
        static void Main(string[] args)
        {
            //graphConvNetExample();

            //runConvNetExample();
            //cntkModelToGraphviz();
            //Console.ReadKey();
            //return;

            var   rnd         = new Random(1);
            Color randomColor = Color.FromArgb(rnd.Next(256), rnd.Next(256), rnd.Next(256));

            //var root = "C:\\sc\\github\\anndotnet\\src\\tool";
            //Iris flower recognition
            //Famous multi class classification datset: https://archive.ics.uci.edu/ml/datasets/iris

            var mlConfigFile3 = $"model_mlconfigs\\iris.mlconfig";

            //run example
            // var token2 = new CancellationToken();

            //train mlconfig
            var result = MachineLearning.Train(mlConfigFile3, trainingProgress, new CancellationToken(), null);

            //once the mode is trained you can write performance analysis of the model
            MachineLearning.PrintPerformance(mlConfigFile3);

            //SHow training history
            showTrainingHistory(mlConfigFile3);

            //evaluate model and export the result of testing
            //MLExport.ExportToCSV(mlConfigFile2, DeviceDescriptor.UseDefaultDevice(),"./model_mlconfigs/iris_result.csv" ).Wait();



            //******run all configurations in the solution******

            //for (int i = 0; i < 10; i++)
            //    runAllml_configurations(strLocation1);


            //*****end of program*****
            Console.WriteLine("Press any key to continue!");
            Console.ReadKey();
        }
Example #2
0
        static void Main(string[] args)
        {
            string root = "C:\\sc\\github\\anndotnet\\src\\tool\\";

            //transformDailyLevelVeanaLake();
            //return;

            //regression
            var mlConfigFile1 = $"{root}anndotnet.wnd\\Resources\\Concrete\\ConcreteSlumpProject\\FFNModel.mlconfig";

            //binary classification
            var mlConfigFile2 = $"{root}anndotnet.wnd\\Resources\\Titanic\\TitanicProject\\DNNModel.mlconfig";

            //Multi-class classification
            //Famous multi class classification datset: https://archive.ics.uci.edu/ml/datasets/iris
            var mlConfigFile3 = "./model_mlconfigs/iris.mlconfig";

            //run example
            var token2 = new CancellationToken();

            //train mlconfig
            var result = MachineLearning.Train(mlConfigFile3, trainingProgress, token2, null);

            //once the mode is trained you can write performance analysis of the model
            MachineLearning.PrintPerformance(mlConfigFile1);

            //evaluate model and export the result of testing
            MLExport.ExportToCSV(mlConfigFile2, DeviceDescriptor.UseDefaultDevice(), "./model_mlconfigs/iris_result.csv").Wait();

            //******run all configurations in the solution******
            //string strLocation1 = "C:\\sc\\github\\anndotnet\\src\\tool\\";
            //for (int i = 0; i < 10; i++)
            //    runAllml_configurations(strLocation1);


            //*****end of program*****
            Console.WriteLine("Press any key to continue!");
            Console.ReadKey();
        }