//***********************************************************************
            // Tests the correct implementation of sqrt() method.
            //***********************************************************************

            public static void SqrtTest(int rounds)
            {
                Random rand = new Random();
                for (int count = 0; count < rounds; count++)
                {
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 1024);

                    Console.Write("Round = " + count);

                    BigInteger a = new BigInteger();
                    a.genRandomBits(t1, rand);

                    BigInteger b = a.sqrt();
                    BigInteger c = (b + 1) * (b + 1);

                    // check that b is the largest integer such that b*b <= a
                    if (c <= a)
                    {
                        Console.WriteLine("\nError at round " + count);
                        Console.WriteLine(a + "\n");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }
            }
            private bool LucasStrongTestHelper(BigInteger thisVal)
            {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4

                long D = 5, sign = -1, dCount = 0;
                bool done = false;

                while (!done)
                {
                    int Jresult = BigInteger.Jacobi(D, thisVal);

                    if (Jresult == -1)
                        done = true;    // J(D, this) = 1
                    else
                    {
                        if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                            return false;

                        if (dCount == 20)
                        {
                            // check for square
                            BigInteger root = thisVal.sqrt();
                            if (root * root == thisVal)
                                return false;
                        }

                        //Console.WriteLine(D);
                        D = (Math.Abs(D) + 2) * sign;
                        sign = -sign;
                    }
                    dCount++;
                }

                long Q = (1 - D) >> 2;

                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */

                BigInteger p_add1 = thisVal + 1;
                int s = 0;

                for (int index = 0; index < p_add1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_add1.data[index] & mask) != 0)
                        {
                            index = p_add1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_add1 >> s;

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / thisVal;

                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;

                if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                    // u(t) = 0 or V(t) = 0
                    isPrime = true;
                }

                for (int i = 1; i < s; i++)
                {
                    if (!isPrime)
                    {
                        // doubling of index
                        lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                        lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                        //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                        if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                            isPrime = true;
                    }

                    lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
                }


                if (isPrime)     // additional checks for composite numbers
                {
                    // If n is prime and gcd(n, Q) == 1, then
                    // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                    BigInteger g = thisVal.gcd(Q);
                    if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                    {
                        if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                            lucas[2] += thisVal;

                        BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                        if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                            temp += thisVal;

                        if (lucas[2] != temp)
                            isPrime = false;
                    }
                }

                return isPrime;
            }