public void LabelStoreToExcel() { DataTable labelDt = new DataTable(); for (int i = 0; i < highbounds[0] - lowbounds[0] + 1; i++) { labelDt.Columns.Add(i.ToString(), Type.GetType("System.Double")); } for (int i = 0; i < labelMatrix.RowCount; i++) { var row = labelDt.NewRow(); row.ItemArray = labelMatrix.Row(labelMatrix.RowCount - i - 1).Select(x => (object)x).ToArray(); labelDt.Rows.Add(row); } if (File.Exists(@"C:\Users\shiya\Desktop\record\label.xlsx")) { File.Delete(@"C:\Users\shiya\Desktop\record\label.xlsx"); } File.Create(@"C:\Users\shiya\Desktop\record\label.xlsx").Close(); ExcelOperation.dataTableListToExcel(new List <DataTable>() { labelDt }, false, @"C:\Users\shiya\Desktop\record\label.xlsx"); _data.strbuf = "Finish Write Labels to Excel"; _data.update = true; }
void UpdateRecordAndDisplay() { Console.WriteLine("Generation: {0}", gen); List <GAEncoding> currentBests = cePool.Where(x => x.Key.entropy == cePool.Max(y => y.Key.entropy)) .Select(x => x.Key).ToList(); for (int i = 0; i < currentBests.Count; i++) { Console.WriteLine("Solution: {1}, Entropy: {0}", currentBests[i].entropy, i); } var a = currentBests[0].weightsVect.Sum(); var solutions = Print_Solution(currentBests[0]); object[] temp = new object[pNumOfParams * pNumOfParams]; var newRow = dt.NewRow(); for (int i = 0; i < pNumOfParams * pNumOfParams; i++) { temp[i] = currentBests[0].weightsVect.ToArray()[i]; } newRow.ItemArray = temp; dt.Rows.Add(newRow); int fake = 0; if (fake > 0) { ExcelOperation.dataTableListToExcel(new List <DataTable>() { dt }, false, @"C:\Users\shiya\Desktop\record\a.xlsx"); } }
void UpdateRecordAndDisplay() { Console.WriteLine("Generation: {0}", gen); List <GAEncoding> currentBests = cePool.Where(x => x.Key.rank == 0) .Select(x => x.Key).ToList(); //for (int i = 0; i < currentBests.Count; i++) //{ // Console.WriteLine("Solution: {1}, Entropy: {0}", currentBests[i].entropy, i); // Console.WriteLine("Solution: {1}, Diversity: {0}", currentBests[i].diversity, i); //} Console.WriteLine("Max_Entropy: {0}", currentBests.Where(x => x.entropy == currentBests .Max(y => y.entropy)).First().entropy); Console.WriteLine("Max_Diversity: {0}", currentBests.Where(x => x.diversity == currentBests .Max(y => y.diversity)).First().diversity); _data.fitness = currentBests.Where(x => x.entropy == currentBests .Max(y => y.entropy)).First().entropy; _data.generation = gen; _data.strbuf = "Fitness: " + _data.fitness.ToString(); _data.update = true; var a = currentBests[0].weightsVect.Sum(); var solutions = Print_Solution(currentBests[0]); object[] temp = new object[pNumOfParams * pNumOfParams]; var newRow = dt.NewRow(); for (int i = 0; i < pNumOfParams * pNumOfParams; i++) { temp[i] = currentBests[0].weightsVect.ToArray()[i]; } newRow.ItemArray = temp; dt.Rows.Add(newRow); int fake = 0; if (fake > 0) { ExcelOperation.dataTableListToExcel(new List <DataTable>() { dt }, false, @"C:\Users\shiya\Desktop\record\a.xlsx"); } }