public static float[] Extract(float[] volume, int3 dimsvolume, int3 centerextract, int3 dimsextract) { int3 Origin = new int3(centerextract.X - dimsextract.X / 2, centerextract.Y - dimsextract.Y / 2, centerextract.Z - dimsextract.Z / 2); float[] Extracted = new float[dimsextract.Elements()]; unsafe { fixed (float* volumePtr = volume) fixed (float* ExtractedPtr = Extracted) for (int z = 0; z < dimsextract.Z; z++) for (int y = 0; y < dimsextract.Y; y++) for (int x = 0; x < dimsextract.X; x++) { int3 Pos = new int3((Origin.X + x + dimsvolume.X) % dimsvolume.X, (Origin.Y + y + dimsvolume.Y) % dimsvolume.Y, (Origin.Z + z + dimsvolume.Z) % dimsvolume.Z); float Val = volumePtr[(Pos.Z * dimsvolume.Y + Pos.Y) * dimsvolume.X + Pos.X]; ExtractedPtr[(z * dimsextract.Y + y) * dimsextract.X + x] = Val; } } return Extracted; }
public MainWindow() { try { Options.DeviceCount = GPU.GetDeviceCount(); if (Options.DeviceCount <= 0) throw new Exception(); } catch (Exception) { MessageBox.Show("No CUDA devices found, shutting down."); Close(); } GPU.MemoryChanged += () => Options.UpdateGPUStats(); DataContext = Options; Options.PropertyChanged += Options_PropertyChanged; Closing += MainWindow_Closing; InitializeComponent(); DisableWhenRunning = new List<UIElement> { GridOptionsIO, GridOptionsPreprocessing, GridOptionsParticles, GridOptionsCTF, GridOptionsMovement, GridOptionsGrids, GridOptionsPostprocessing }; if (File.Exists("Previous.settings")) Options.Load("Previous.settings"); for (int i = 0; i < GPU.GetDeviceCount(); i++) { GPU.SetDevice(i); Console.WriteLine($"Device {i}:"); Console.WriteLine($"Free memory: {GPU.GetFreeMemory(i)} MB"); Console.WriteLine($"Total memory: {GPU.GetTotalMemory(i)} MB"); } GPU.SetDevice(0); Options.UpdateGPUStats(); // Create mockup { float2[] SplinePoints = { new float2(0f, 0f), new float2(1f / 3f, 1f)};//, new float2(2f / 3f, 0f)};//, new float2(1f, 1f) }; Cubic1D ReferenceSpline = new Cubic1D(SplinePoints); Cubic1DShort ShortSpline = Cubic1DShort.GetInterpolator(SplinePoints); for (float i = -1f; i < 2f; i += 0.01f) { float Reference = ReferenceSpline.Interp(i); float Test = ShortSpline.Interp(i); if (Math.Abs(Reference - Test) > 1e-6f) throw new Exception(); } Random Rnd = new Random(123); int3 GridDim = new int3(1, 1, 1); float[] GridValues = new float[GridDim.Elements()]; for (int i = 0; i < GridValues.Length; i++) GridValues[i] = (float)Rnd.NextDouble(); CubicGrid CGrid = new CubicGrid(GridDim, GridValues); float[] Managed = CGrid.GetInterpolated(new int3(16, 16, 16), new float3(0, 0, 0)); float[] Native = CGrid.GetInterpolatedNative(new int3(16, 16, 16), new float3(0, 0, 0)); for (int i = 0; i < Managed.Length; i++) if (Math.Abs(Managed[i] - Native[i]) > 1e-6f) throw new Exception(); Matrix3 A = new Matrix3(1, 2, 3, 4, 5, 6, 7, 8, 9); Matrix3 B = new Matrix3(11, 12, 13, 14, 15, 16, 17, 18, 19); Matrix3 C = A * B; // Euler matrix { Matrix3 E = Matrix3.Euler(0 * Helper.ToRad, 20 * Helper.ToRad, 0 * Helper.ToRad); float3 EE = Matrix3.EulerFromMatrix(E.Transposed()) * Helper.ToDeg; float3 Transformed = E * new float3(1, 0, 0); Transformed.Y = 0; } //float3[] HealpixAngles = Helper.GetHealpixAngles(3, "D4"); // Deconvolve reconstructions using a separate CTF //{ // for (int i = 1; i <= 24; i++) // { // Image Map = StageDataLoad.LoadMap($"F:\\stefanribo\\vlion\\warped_{i}.mrc", new int2(1, 1), 0, typeof(float)); // Image MapFT = Map.AsFFT(true); // Map.Dispose(); // Image CTF = StageDataLoad.LoadMap($"F:\\stefanribo\\vlion\\warped_ctf_{i}.mrc", new int2(1, 1), 0, typeof(float)); // foreach (var slice in CTF.GetHost(Intent.ReadWrite)) // for (int s = 0; s < slice.Length; s++) // slice[s] = Math.Max(1e-3f, slice[s]); // MapFT.Divide(CTF); // Map = MapFT.AsIFFT(true); // MapFT.Dispose(); // Map.WriteMRC($"F:\\stefanribo\\vlion\\warped_deconv_{i}.mrc"); // Map.Dispose(); // } //} //{ // Image SumFT = new Image(new int3(220, 220, 220), true, true); // Image SumWeights = new Image(new int3(220, 220, 220), true); // int read = 0; // foreach (var tomoPath in Directory.EnumerateFiles("F:\\stefanribo\\oridata\\particles", "tomo*.mrc")) // { // FileInfo Info = new FileInfo(tomoPath); // Image Tomo = StageDataLoad.LoadMap(tomoPath, new int2(1, 1), 0, typeof(float)); // Image TomoFT = Tomo.AsFFT(true); // Tomo.Dispose(); // Image TomoWeights = StageDataLoad.LoadMap("F:\\stefanribo\\oridata\\particlectf\\" + Info.Name, new int2(1, 1), 0, typeof(float)); // TomoFT.Multiply(TomoWeights); // TomoWeights.Multiply(TomoWeights); // SumFT.Add(TomoFT); // SumWeights.Add(TomoWeights); // TomoFT.Dispose(); // TomoWeights.Dispose(); // Debug.WriteLine(read++); // } // foreach (var slice in SumWeights.GetHost(Intent.ReadWrite)) // { // for (int i = 0; i < slice.Length; i++) // { // slice[i] = Math.Max(1e-3f, slice[i]); // } // } // SumFT.Divide(SumWeights); // Image Sum = SumFT.AsIFFT(true); // Sum.WriteMRC("F:\\stefanribo\\oridata\\particles\\weightedaverage.mrc"); // SumFT.Dispose(); // SumWeights.Dispose(); // Sum.Dispose(); //} //{ // Image Subtrahend = StageDataLoad.LoadMap("E:\\martinsried\\stefan\\membranebound\\vlion\\relion_subtrahend.mrc", new int2(1, 1), 0, typeof(float)); // Image SubtrahendFT = Subtrahend.AsFFT(true); // int read = 0; // foreach (var tomoPath in Directory.EnumerateFiles("E:\\martinsried\\stefan\\membranebound\\oridata\\particles", "tomo*.mrc")) // { // FileInfo Info = new FileInfo(tomoPath); // Image Tomo = StageDataLoad.LoadMap(tomoPath, new int2(1, 1), 0, typeof(float)); // Image TomoFT = Tomo.AsFFT(true); // Tomo.Dispose(); // Image TomoWeights = StageDataLoad.LoadMap("E:\\martinsried\\stefan\\membranebound\\oridata\\particlectf\\" + Info.Name, new int2(1, 1), 0, typeof(float)); // Image SubtrahendFTMult = new Image(SubtrahendFT.GetDevice(Intent.Read), SubtrahendFT.Dims, true, true); // SubtrahendFTMult.Multiply(TomoWeights); // TomoFT.Subtract(SubtrahendFTMult); // Tomo = TomoFT.AsIFFT(true); // Tomo.WriteMRC("D:\\stefanribo\\particles\\" + Info.Name); // Tomo.Dispose(); // TomoFT.Dispose(); // SubtrahendFTMult.Dispose(); // TomoWeights.Dispose(); // Debug.WriteLine(read++); // } //} //{ // Image SubtRef1 = StageDataLoad.LoadMap("E:\\martinsried\\stefan\\membranebound\\vlion\\warp_subtrahend.mrc", new int2(1, 1), 0, typeof(float)); // Projector Subt = new Projector(SubtRef1, 2); // SubtRef1.Dispose(); // Image ProjFT = Subt.Project(new int2(220, 220), new[] { new float3(0, 0, 0) }, 110); // Image Proj = ProjFT.AsIFFT(); // Proj.RemapFromFT(); // Proj.WriteMRC("d_testproj.mrc"); //} // Projector /*{ Image MapForProjector = StageDataLoad.LoadMap("E:\\youwei\\run36_half1_class001_unfil.mrc", new int2(1, 1), 0, typeof (float)); Projector Proj = new Projector(MapForProjector, 2); Image Projected = Proj.Project(new int2(240, 240), new[] { new float3(0, 0, 0) }, 120); Projected = Projected.AsIFFT(); Projected.RemapFromFT(); Projected.WriteMRC("d_projected.mrc"); }*/ // Backprojector /*{ Image Dot = new Image(new int3(32, 32, 360)); for (int a = 0; a < 360; a++) Dot.GetHost(Intent.Write)[a][0] = 1; Dot = Dot.AsFFT(); Dot.AsAmplitudes().WriteMRC("d_dot.mrc"); Image DotWeights = new Image(new int3(32, 32, 360), true); for (int a = 0; a < 360; a++) for (int i = 0; i < DotWeights.ElementsSliceReal; i++) DotWeights.GetHost(Intent.Write)[a][i] = 1; float3[] Angles = new float3[360]; for (int a = 0; a < 360; a++) Angles[a] = new float3(0, a * Helper.ToRad * 0.05f, 0); Projector Proj = new Projector(new int3(32, 32, 32), 2); Proj.BackProject(Dot, DotWeights, Angles); Proj.Weights.WriteMRC("d_weights.mrc"); //Image Re = Proj.Data.AsImaginary(); //Re.WriteMRC("d_projdata.mrc"); Image Rec = Proj.Reconstruct(true); Rec.WriteMRC("d_rec.mrc"); }*/ //Star Models = new Star("D:\\rado27\\Refine3D\\run1_ct5_it005_half1_model.star", "data_model_group_2"); //Debug.WriteLine(Models.GetRow(0)[0]); /*Image Volume = StageDataLoad.LoadMap("F:\\carragher20s\\ref256.mrc", new int2(1, 1), 0, typeof (float)); Image VolumePadded = Volume.AsPadded(new int3(512, 512, 512)); VolumePadded.WriteMRC("d_padded.mrc"); Volume.Dispose(); VolumePadded.RemapToFT(true); Image VolumeFT = VolumePadded.AsFFT(true); VolumePadded.Dispose(); Image VolumeProjFT = VolumeFT.AsProjections(new[] { new float3(Helper.ToRad * 0, Helper.ToRad * 0, Helper.ToRad * 0) }, new int2(256, 256), 2f); Image VolumeProj = VolumeProjFT.AsIFFT(); VolumeProjFT.Dispose(); VolumeProj.RemapFromFT(); VolumeProj.WriteMRC("d_proj.mrc"); VolumeProj.Dispose();*/ /*Options.Movies.Add(new Movie(@"D:\Dev\warp\May19_21.44.54.mrc")); Options.Movies.Add(new Movie(@"D:\Dev\warp\May19_21.49.06.mrc")); Options.Movies.Add(new Movie(@"D:\Dev\warp\May19_21.50.48.mrc")); Options.Movies.Add(new Movie(@"D:\Dev\warp\May19_21.52.16.mrc")); Options.Movies.Add(new Movie(@"D:\Dev\warp\May19_21.53.43.mrc")); CTFDisplay.PS2D = new BitmapImage();*/ /*float2[] SimCoords = new float2[512 * 512]; for (int y = 0; y < 512; y++) for (int x = 0; x < 512; x++) { int xcoord = x - 512, ycoord = y - 512; SimCoords[y * 512 + x] = new float2((float) Math.Sqrt(xcoord * xcoord + ycoord * ycoord), (float) Math.Atan2(ycoord, xcoord)); } float[] Sim2D = new CTF {Defocus = -2M}.Get2D(SimCoords, 512, true); byte[] Sim2DBytes = new byte[Sim2D.Length]; for (int i = 0; i < 512 * 512; i++) Sim2DBytes[i] = (byte) (Sim2D[i] * 255f); BitmapSource Sim2DSource = BitmapSource.Create(512, 512, 96, 96, PixelFormats.Indexed8, BitmapPalettes.Gray256, Sim2DBytes, 512); CTFDisplay.Simulated2D = Sim2DSource;*/ /*float2[] PointsPS1D = new float2[512]; for (int i = 0; i < PointsPS1D.Length; i++) PointsPS1D[i] = new float2(i, (float) Math.Exp(-i / 300f)); CTFDisplay.PS1D = PointsPS1D; float[] SimCTF = new CTF { Defocus = -2M }.Get1D(512, true); float2[] PointsSim1D = new float2[SimCTF.Length]; for (int i = 0; i < SimCTF.Length; i++) PointsSim1D[i] = new float2(i, SimCTF[i] * (float)Math.Exp(-i / 100f) + (float)Math.Exp(-i / 300f)); CTFDisplay.Simulated1D = PointsSim1D;*/ /*CubicGrid Grid = new CubicGrid(new int3(5, 5, 5), 0, 0, Dimension.X); Grid.Values[2, 2, 2] = 1f; float[] Data = new float[11 * 11 * 11]; int i = 0; for (float z = 0f; z < 1.05f; z += 0.1f) for (float y = 0f; y < 1.05f; y += 0.1f) for (float x = 0f; x < 1.05f; x += 0.1f) Data[i++] = Grid.GetInterpolated(new float3(x, y, z)); Image DataImage = new Image(Data, new int3(11, 11, 11)); DataImage.WriteMRC("bla.mrc"); Image GPUImage = new Image(DataImage.GetDevice(Intent.Read), new int3(11, 11, 11)); GPUImage.WriteMRC("gpu.mrc");*/ /*CubicGrid WiggleGrid = new CubicGrid(new int3(2, 2, 1)); float[][] WiggleWeights = WiggleGrid.GetWiggleWeights(new int3(3, 3, 1));*/ } }
public CubicGrid Resize(int3 newSize) { float[] Result = new float[newSize.Elements()]; float StepX = 1f / Math.Max(1, newSize.X - 1); float StepY = 1f / Math.Max(1, newSize.Y - 1); float StepZ = 1f / Math.Max(1, newSize.Z - 1); for (int z = 0, i = 0; z < newSize.Z; z++) for (int y = 0; y < newSize.Y; y++) for (int x = 0; x < newSize.X; x++, i++) Result[i] = GetInterpolated(new float3(x * StepX, y * StepY, z * StepZ)); return new CubicGrid(newSize, Result); }
public float[] GetInterpolatedNative(int3 valueGrid, float3 border) { float[] Result = new float[valueGrid.Elements()]; float StepX = (1f - border.X * 2) / Math.Max(1, valueGrid.X - 1); float OffsetX = border.X; float StepY = (1f - border.Y * 2) / Math.Max(1, valueGrid.Y - 1); float OffsetY = border.Y; float StepZ = (1f - border.Z * 2) / Math.Max(valueGrid.Z - 1, 1); float OffsetZ = valueGrid.Z == 1 ? 0.5f : border.Z; CPU.CubicInterpOnGrid(Dimensions, FlatValues, Spacing, valueGrid, new float3(StepX, StepY, StepZ), new float3(OffsetX, OffsetY, OffsetZ), Result); return Result; }
public float[] GetInterpolated(int3 valueGrid, float3 border) { float[] Result = new float[valueGrid.Elements()]; float StepX = (1f - border.X * 2) / Math.Max(1, valueGrid.X - 1); float OffsetX = border.X; float StepY = (1f - border.Y * 2) / Math.Max(1, valueGrid.Y - 1); float OffsetY = border.Y; float StepZ = (1f - border.Z * 2) / Math.Max(valueGrid.Z - 1, 1); float OffsetZ = valueGrid.Z == 1 ? 0.5f : border.Z; for (int z = 0, i = 0; z < valueGrid.Z; z++) for (int y = 0; y < valueGrid.Y; y++) for (int x = 0; x < valueGrid.X; x++, i++) Result[i] = GetInterpolated(new float3(x * StepX + OffsetX, y * StepY + OffsetY, z * StepZ + OffsetZ)); return Result; }
public void Correlate(Image tiltStack, Image reference, int size, float lowpassAngstrom, float highpassAngstrom, int3 volumeDimensions, int healpixOrder, string symmetry = "C1") { if (!Directory.Exists(CorrelationDir)) Directory.CreateDirectory(CorrelationDir); float DownscaleFactor = lowpassAngstrom / (float)(CTF.PixelSize * 2); Image DownscaledStack = tiltStack.AsScaledMassive(new int2(tiltStack.Dims) / DownscaleFactor / 2 * 2); tiltStack.FreeDevice(); float HighpassNyquist = (float)(CTF.PixelSize * 2) * DownscaleFactor / highpassAngstrom; DownscaledStack.Bandpass(HighpassNyquist, 1, false); Image ScaledReference = reference.AsScaled(reference.Dims / DownscaleFactor / 2 * 2); reference.FreeDevice(); Image PaddedReference = ScaledReference.AsPadded(new int3(size, size, size)); ScaledReference.Dispose(); PaddedReference.Bandpass(HighpassNyquist, 1, true); Projector ProjectorReference = new Projector(PaddedReference, 2); PaddedReference.Dispose(); VolumeDimensions = volumeDimensions / DownscaleFactor / 2 * 2; int SizeCropped = size / 2; int3 Grid = (VolumeDimensions + SizeCropped - 1) / SizeCropped; List<float3> GridCoords = new List<float3>(); for (int z = 0; z < Grid.Z; z++) for (int y = 0; y < Grid.Y; y++) for (int x = 0; x < Grid.X; x++) GridCoords.Add(new float3(x * SizeCropped + SizeCropped / 2, y * SizeCropped + SizeCropped / 2, z * SizeCropped + SizeCropped / 2)); float3[] HealpixAngles = Helper.GetHealpixAngles(healpixOrder, symmetry).Select(a => a * Helper.ToRad).ToArray(); Image CTFCoords = GetCTFCoords(size, (int)(size * DownscaleFactor)); float[] OutputCorr = new float[VolumeDimensions.Elements()]; int PlanForw, PlanBack, PlanForwCTF; Projector.GetPlans(new int3(size, size, size), 2, out PlanForw, out PlanBack, out PlanForwCTF); int BatchSize = 16; for (int b = 0; b < GridCoords.Count; b += BatchSize) { int CurBatch = Math.Min(BatchSize, GridCoords.Count - b); Image Subtomos = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch), true, true); Image SubtomoCTFs = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch), true); for (int st = 0; st < CurBatch; st++) { Image ImagesFT = GetSubtomoImages(DownscaledStack, size, GridCoords[b + st], true); Image CTFs = GetSubtomoCTFs(GridCoords[b + st], CTFCoords); //Image CTFWeights = GetSubtomoCTFs(GridCoords[b + st], CTFCoords, true, true); ImagesFT.Multiply(CTFs); // Weight and phase-flip image FTs by CTF, which still has its sign here //ImagesFT.Multiply(CTFWeights); CTFs.Abs(); // CTF has to be positive from here on since image FT phases are now flipped // CTF has to be converted to complex numbers with imag = 0, and weighted by itself float2[] CTFsComplexData = new float2[CTFs.ElementsComplex]; float[] CTFsContinuousData = CTFs.GetHostContinuousCopy(); for (int i = 0; i < CTFsComplexData.Length; i++) CTFsComplexData[i] = new float2(CTFsContinuousData[i] * CTFsContinuousData[i], 0); Image CTFsComplex = new Image(CTFsComplexData, CTFs.Dims, true); Projector ProjSubtomo = new Projector(new int3(size, size, size), 2); lock (GPU.Sync) ProjSubtomo.BackProject(ImagesFT, CTFs, GetAngleInImages(GridCoords[b + st])); Image Subtomo = ProjSubtomo.Reconstruct(false, PlanForw, PlanBack, PlanForwCTF); ProjSubtomo.Dispose(); /*Image CroppedSubtomo = Subtomo.AsPadded(new int3(SizeCropped, SizeCropped, SizeCropped)); CroppedSubtomo.WriteMRC(ParticlesDir + RootName + "_" + (b + st).ToString("D5") + ".mrc"); CroppedSubtomo.Dispose();*/ Projector ProjCTF = new Projector(new int3(size, size, size), 2); lock (GPU.Sync) ProjCTF.BackProject(CTFsComplex, CTFs, GetAngleInImages(GridCoords[b + st])); Image SubtomoCTF = ProjCTF.Reconstruct(true, PlanForw, PlanBack, PlanForwCTF); ProjCTF.Dispose(); GPU.FFT(Subtomo.GetDevice(Intent.Read), Subtomos.GetDeviceSlice(size * st, Intent.Write), Subtomo.Dims, 1); GPU.CopyDeviceToDevice(SubtomoCTF.GetDevice(Intent.Read), SubtomoCTFs.GetDeviceSlice(size * st, Intent.Write), SubtomoCTF.ElementsReal); ImagesFT.Dispose(); CTFs.Dispose(); //CTFWeights.Dispose(); CTFsComplex.Dispose(); Subtomo.Dispose(); SubtomoCTF.Dispose(); } Image BestCorrelation = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch)); Image BestRot = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch)); Image BestTilt = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch)); Image BestPsi = new Image(IntPtr.Zero, new int3(size, size, size * CurBatch)); GPU.CorrelateSubTomos(ProjectorReference.Data.GetDevice(Intent.Read), ProjectorReference.Oversampling, ProjectorReference.Data.Dims, Subtomos.GetDevice(Intent.Read), SubtomoCTFs.GetDevice(Intent.Read), new int3(size, size, size), (uint)CurBatch, Helper.ToInterleaved(HealpixAngles), (uint)HealpixAngles.Length, MainWindow.Options.ExportParticleRadius / ((float)CTF.PixelSize * DownscaleFactor), BestCorrelation.GetDevice(Intent.Write), BestRot.GetDevice(Intent.Write), BestTilt.GetDevice(Intent.Write), BestPsi.GetDevice(Intent.Write)); for (int st = 0; st < CurBatch; st++) { Image ThisCorrelation = new Image(BestCorrelation.GetDeviceSlice(size * st, Intent.Read), new int3(size, size, size)); Image CroppedCorrelation = ThisCorrelation.AsPadded(new int3(SizeCropped, SizeCropped, SizeCropped)); //CroppedCorrelation.WriteMRC(CorrelationDir + RootName + "_" + (b + st).ToString("D5") + ".mrc"); float[] SubCorr = CroppedCorrelation.GetHostContinuousCopy(); int3 Origin = new int3(GridCoords[b + st]) - SizeCropped / 2; for (int z = 0; z < SizeCropped; z++) { int zVol = Origin.Z + z; if (zVol >= VolumeDimensions.Z) continue; for (int y = 0; y < SizeCropped; y++) { int yVol = Origin.Y + y; if (yVol >= VolumeDimensions.Y) continue; for (int x = 0; x < SizeCropped; x++) { int xVol = Origin.X + x; if (xVol >= VolumeDimensions.X) continue; OutputCorr[(zVol * VolumeDimensions.Y + yVol) * VolumeDimensions.X + xVol] = SubCorr[(z * SizeCropped + y) * SizeCropped + x]; } } } CroppedCorrelation.Dispose(); ThisCorrelation.Dispose(); } Subtomos.Dispose(); SubtomoCTFs.Dispose(); BestCorrelation.Dispose(); BestRot.Dispose(); BestTilt.Dispose(); BestPsi.Dispose(); } GPU.DestroyFFTPlan(PlanForw); GPU.DestroyFFTPlan(PlanBack); GPU.DestroyFFTPlan(PlanForwCTF); CTFCoords.Dispose(); ProjectorReference.Dispose(); DownscaledStack.Dispose(); Image OutputCorrImage = new Image(OutputCorr, VolumeDimensions); OutputCorrImage.WriteMRC(CorrelationDir + RootName + ".mrc"); OutputCorrImage.Dispose(); }
public void ProcessCTFOneAngle(Image angleImage, float angle, bool fromScratch, bool fixAstigmatism, float2 astigmatism, CTF previousCTF, CubicGrid previousGrid, Cubic1D previousBackground, Cubic1D previousScale, out CTF thisCTF, out CubicGrid thisGrid, out float2[] thisPS1D, out Cubic1D thisBackground, out Cubic1D thisScale, out Image thisPS2D) { CTF TempCTF = previousCTF != null ? previousCTF.GetCopy() : new CTF(); float2[] TempPS1D = null; Cubic1D TempBackground = null, TempScale = null; CubicGrid TempGrid = null; #region Dimensions and grids int NFrames = angleImage.Dims.Z; int2 DimsImage = angleImage.DimsSlice; int2 DimsRegion = new int2(MainWindow.Options.CTFWindow, MainWindow.Options.CTFWindow); float OverlapFraction = 0.5f; int2 DimsPositionGrid; int3[] PositionGrid = Helper.GetEqualGridSpacing(DimsImage, new int2(DimsRegion.X, DimsRegion.Y), OverlapFraction, out DimsPositionGrid); int NPositions = (int)DimsPositionGrid.Elements(); if (previousGrid == null) TempGrid = new CubicGrid(new int3(2, 2, 1)); else TempGrid = new CubicGrid(new int3(2, 2, 1), previousGrid.FlatValues); bool CTFSpace = true; bool CTFTime = false; int3 CTFSpectraGrid = new int3(DimsPositionGrid.X, DimsPositionGrid.Y, 1); int MinFreqInclusive = (int)(MainWindow.Options.CTFRangeMin * DimsRegion.X / 2); int MaxFreqExclusive = (int)(MainWindow.Options.CTFRangeMax * DimsRegion.X / 2); int NFreq = MaxFreqExclusive - MinFreqInclusive; #endregion #region Allocate GPU memory Image CTFSpectra = new Image(IntPtr.Zero, new int3(DimsRegion.X, DimsRegion.X, (int)CTFSpectraGrid.Elements()), true); Image CTFMean = new Image(IntPtr.Zero, new int3(DimsRegion), true); Image CTFCoordsCart = new Image(new int3(DimsRegion), true, true); Image CTFCoordsPolarTrimmed = new Image(new int3(NFreq, DimsRegion.X, 1), false, true); #endregion // Extract movie regions, create individual spectra in Cartesian coordinates and their mean. #region Create spectra GPU.CreateSpectra(angleImage.GetDevice(Intent.Read), DimsImage, NFrames, PositionGrid, NPositions, DimsRegion, CTFSpectraGrid, CTFSpectra.GetDevice(Intent.Write), CTFMean.GetDevice(Intent.Write)); angleImage.FreeDevice(); // Won't need it in this method anymore. #endregion // Populate address arrays for later. #region Init addresses { float2[] CoordsData = new float2[CTFCoordsCart.ElementsSliceComplex]; Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => CoordsData[y * (DimsRegion.X / 2 + 1) + x] = new float2(r, a)); CTFCoordsCart.UpdateHostWithComplex(new[] { CoordsData }); CoordsData = new float2[NFreq * DimsRegion.X]; Helper.ForEachElement(CTFCoordsPolarTrimmed.DimsSlice, (x, y) => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; float Ny = 1f / DimsRegion.X; CoordsData[y * NFreq + x] = new float2((x + MinFreqInclusive) * Ny, Angle); }); CTFCoordsPolarTrimmed.UpdateHostWithComplex(new[] { CoordsData }); } #endregion // Retrieve average 1D spectrum from CTFMean (not corrected for astigmatism yet). #region Initial 1D spectrum { Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMean.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMean.ElementsSliceReal, (uint)DimsRegion.X, new[] { new CTF().ToStruct() }, new CTF().ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] CTFAverage1DData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[DimsRegion.X / 2]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(CTFAverage1DData[i], 4)); TempPS1D = ForPS1D; CTFAverage1D.Dispose(); } #endregion #region Background fitting methods Action UpdateBackgroundFit = () => { float2[] ForPS1D = TempPS1D.Skip(Math.Max(5, MinFreqInclusive / 2)).ToArray(); Cubic1D.FitCTF(ForPS1D, v => v.Select(x => TempCTF.Get1D(x / (float)TempCTF.PixelSize, true)).ToArray(), TempCTF.GetZeros(), TempCTF.GetPeaks(), out TempBackground, out TempScale); }; Action<bool> UpdateRotationalAverage = keepbackground => { float[] MeanData = CTFMean.GetHost(Intent.Read)[0]; Image CTFMeanCorrected = new Image(new int3(DimsRegion), true); float[] MeanCorrectedData = CTFMeanCorrected.GetHost(Intent.Write)[0]; // Subtract current background estimate from spectra, populate coords. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { int i = y * (DimsRegion.X / 2 + 1) + x; MeanCorrectedData[i] = MeanData[i] - TempBackground.Interp(r / DimsRegion.X); }); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMeanCorrected.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMeanCorrected.DimsEffective.ElementsSlice(), (uint)DimsRegion.X, new[] { TempCTF.ToStruct() }, TempCTF.ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[TempPS1D.Length]; if (keepbackground) for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i] + TempBackground.Interp((float)i / DimsRegion.X)); else for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i]); MathHelper.UnNaN(ForPS1D); TempPS1D = ForPS1D; CTFMeanCorrected.Dispose(); CTFAverage1D.Dispose(); }; #endregion // Fit background to currently best average (not corrected for astigmatism yet). { float2[] ForPS1D = TempPS1D.Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); float[] CurrentBackground; //if (previousBackground == null) { int NumNodes = Math.Max(3, (int)((MainWindow.Options.CTFRangeMax - MainWindow.Options.CTFRangeMin) * 5M)); TempBackground = Cubic1D.Fit(ForPS1D, NumNodes); // This won't fit falloff and scale, because approx function is 0 CurrentBackground = TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); } /*else { CurrentBackground = previousBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); TempBackground = new Cubic1D(previousBackground.Data); }*/ float[] Subtracted1D = new float[ForPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) Subtracted1D[i] = ForPS1D[i].Y - CurrentBackground[i]; MathHelper.NormalizeInPlace(Subtracted1D); float ZMin = (float)MainWindow.Options.CTFZMin; float ZMax = (float)MainWindow.Options.CTFZMax; float PhaseMin = 0f; float PhaseMax = MainWindow.Options.CTFDoPhase ? 1f : 0f; if (previousCTF != null) { ZMin = (float)previousCTF.Defocus - 0.5f; ZMax = (float)previousCTF.Defocus + 0.5f; if (PhaseMax > 0) { PhaseMin = (float)previousCTF.PhaseShift - 0.3f; PhaseMax = (float)previousCTF.PhaseShift + 0.3f; } } float ZStep = (ZMax - ZMin) / 100f; float BestZ = 0, BestPhase = 0, BestScore = -999; for (float z = ZMin; z <= ZMax + 1e-5f; z += ZStep) { for (float p = PhaseMin; p <= PhaseMax; p += 0.01f) { CTF CurrentParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)z, PhaseShift = (decimal)p, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; float[] SimulatedCTF = CurrentParams.Get1D(TempPS1D.Length, true).Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); MathHelper.NormalizeInPlace(SimulatedCTF); float Score = MathHelper.CrossCorrelate(Subtracted1D, SimulatedCTF); if (Score > BestScore) { BestScore = Score; BestZ = z; BestPhase = p; } } } TempCTF = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)BestZ, PhaseShift = (decimal)BestPhase, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. } // Fit defocus, (phase shift), (astigmatism) to average background-subtracted spectrum, // which is in polar coords at this point (for equal weighting of all frequencies). #region Grid search if (fromScratch) { Image CTFMeanPolarTrimmed = CTFMean.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq / 1)); // Subtract current background. Image CurrentBackground = new Image(TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 1).ToArray()); CTFMeanPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize for CC (not strictly needed, but it's converted for fp16 later, so let's be on the safe side of the fp16 range. GPU.Normalize(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.GetDevice(Intent.Write), (uint)CTFMeanPolarTrimmed.ElementsReal, 1); //CTFMeanPolarTrimmed.WriteMRC("ctfmeanpolartrimmed.mrc"); CTF StartParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, PixelSizeDelta = Math.Abs(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin), PixelSizeAngle = MainWindow.Options.CTFPixelAngle, Defocus = TempCTF.Defocus, // (MainWindow.Options.CTFZMin + MainWindow.Options.CTFZMax) * 0.5M, DefocusDelta = 0, DefocusAngle = 0, PhaseShift = TempCTF.PhaseShift, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; CTFFitStruct FitParams = new CTFFitStruct { Defocus = new float3(-0.4e-6f, 0.4e-6f, 0.025e-6f), Defocusdelta = new float3(0, 0.8e-6f, 0.02e-6f), Astigmatismangle = new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18), Phaseshift = MainWindow.Options.CTFDoPhase ? new float3(-0.2f * (float)Math.PI, 0.2f * (float)Math.PI, 0.025f * (float)Math.PI) : new float3(0, 0, 0) }; CTFStruct ResultStruct = GPU.CTFFitMean(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFCoordsPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.DimsSlice, StartParams.ToStruct(), FitParams, true); TempCTF.FromStruct(ResultStruct); TempCTF.Defocus = Math.Max(TempCTF.Defocus, MainWindow.Options.CTFZMin); CTFMeanPolarTrimmed.Dispose(); UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. UpdateRotationalAverage(true); // This time, with the nice background. UpdateBackgroundFit(); // Make the background even nicer! } else if (previousCTF != null) { TempCTF.DefocusDelta = previousCTF.DefocusDelta; TempCTF.DefocusAngle = previousCTF.DefocusAngle; } if (fixAstigmatism) { TempCTF.DefocusDelta = (decimal)astigmatism.X; TempCTF.DefocusAngle = (decimal)astigmatism.Y; } #endregion if (previousGrid == null) TempGrid = new CubicGrid(TempGrid.Dimensions, (float)TempCTF.Defocus, (float)TempCTF.Defocus, Dimension.X); // Do BFGS optimization of defocus, astigmatism and phase shift, // using 2D simulation for comparison #region BFGS bool[] CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; for (int i = 0; i < CTFSpectraConsider.Length; i++) CTFSpectraConsider[i] = true; int NCTFSpectraConsider = CTFSpectraConsider.Length; { Image CTFSpectraPolarTrimmed = CTFSpectra.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq)); CTFSpectra.FreeDevice(); // This will only be needed again for the final PS1D. #region Create background and scale float[] CurrentScale = TempScale.Interp(TempPS1D.Select(p => p.X).ToArray()); Image CTFSpectraScale = new Image(new int3(NFreq, DimsRegion.X, 1)); float[] CTFSpectraScaleData = CTFSpectraScale.GetHost(Intent.Write)[0]; // Trim polar to relevant frequencies, and populate coordinates. Parallel.For(0, DimsRegion.X, y => { for (int x = 0; x < NFreq; x++) CTFSpectraScaleData[y * NFreq + x] = CurrentScale[x + MinFreqInclusive]; }); //CTFSpectraScale.WriteMRC("ctfspectrascale.mrc"); // Background is just 1 line since we're in polar. Image CurrentBackground = new Image(TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq).ToArray()); #endregion CTFSpectraPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize background-subtracted spectra. GPU.Normalize(CTFSpectraPolarTrimmed.GetDevice(Intent.Read), CTFSpectraPolarTrimmed.GetDevice(Intent.Write), (uint)CTFSpectraPolarTrimmed.ElementsSliceReal, (uint)CTFSpectraGrid.Elements()); //CTFSpectraPolarTrimmed.WriteMRC("ctfspectrapolartrimmed.mrc"); #region Convert to fp16 Image CTFSpectraPolarTrimmedHalf = CTFSpectraPolarTrimmed.AsHalf(); CTFSpectraPolarTrimmed.Dispose(); Image CTFSpectraScaleHalf = CTFSpectraScale.AsHalf(); CTFSpectraScale.Dispose(); Image CTFCoordsPolarTrimmedHalf = CTFCoordsPolarTrimmed.AsHalf(); #endregion // Wiggle weights show how the defocus on the spectra grid is altered // by changes in individual anchor points of the spline grid. // They are used later to compute the dScore/dDefocus values for each spectrum // only once, and derive the values for each anchor point from them. float[][] WiggleWeights = TempGrid.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); // Helper method for getting CTFStructs for the entire spectra grid. Func<double[], CTF, float[], CTFStruct[]> EvalGetCTF = (input, ctf, defocusValues) => { decimal AlteredPhase = MainWindow.Options.CTFDoPhase ? (decimal)input[input.Length - 3] : 0; decimal AlteredDelta = (decimal)input[input.Length - 2]; decimal AlteredAngle = (decimal)(input[input.Length - 1] * 20 / (Math.PI / 180)); CTF Local = ctf.GetCopy(); Local.PhaseShift = AlteredPhase; Local.DefocusDelta = AlteredDelta; Local.DefocusAngle = AlteredAngle; CTFStruct LocalStruct = Local.ToStruct(); CTFStruct[] LocalParams = new CTFStruct[defocusValues.Length]; for (int i = 0; i < LocalParams.Length; i++) { LocalParams[i] = LocalStruct; LocalParams[i].Defocus = defocusValues[i] * -1e-6f; } return LocalParams; }; // Simulate with adjusted CTF, compare to originals #region Eval and Gradient methods Func<double[], double> Eval = input => { CubicGrid Altered = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float Score = 0; for (int i = 0; i < Result.Length; i++) if (CTFSpectraConsider[i]) Score += Result[i]; Score /= NCTFSpectraConsider; if (float.IsNaN(Score) || float.IsInfinity(Score)) throw new Exception("Bad score."); return (1.0 - Score) * 1000.0; }; Func<double[], double[]> Gradient = input => { const float Step = 0.005f; double[] Result = new double[input.Length]; // In 0D grid case, just get gradient for all 4 parameters. // In 1+D grid case, do simple gradient for astigmatism and phase... int StartComponent = input.Length - 3; //int StartComponent = 0; for (int i = StartComponent; i < input.Length; i++) { if (fixAstigmatism && i > StartComponent) continue; double[] UpperInput = new double[input.Length]; input.CopyTo(UpperInput, 0); UpperInput[i] += Step; double UpperValue = Eval(UpperInput); double[] LowerInput = new double[input.Length]; input.CopyTo(LowerInput, 0); LowerInput[i] -= Step; double LowerValue = Eval(LowerInput); Result[i] = (UpperValue - LowerValue) / (2f * Step); } float[] ResultPlus = new float[CTFSpectraGrid.Elements()]; float[] ResultMinus = new float[CTFSpectraGrid.Elements()]; // ..., take shortcut for defoci... { { CubicGrid AlteredPlus = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredMinus = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] DefocusValues = AlteredMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, TempGrid.Dimensions.Elements(), i => Result[i] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeights[i]) / LocalGradients.Length / (2f * Step) * 1000f); } foreach (var i in Result) if (double.IsNaN(i) || double.IsInfinity(i)) throw new Exception("Bad score."); return Result; }; #endregion #region Minimize first time with potential outpiers double[] StartParams = new double[TempGrid.Dimensions.Elements() + 3]; for (int i = 0; i < TempGrid.Dimensions.Elements(); i++) StartParams[i] = TempGrid.FlatValues[i]; StartParams[StartParams.Length - 3] = (double)TempCTF.PhaseShift; StartParams[StartParams.Length - 2] = (double)TempCTF.DefocusDelta; StartParams[StartParams.Length - 1] = (double)TempCTF.DefocusAngle / 20 * (Math.PI / 180); // Compute correlation for individual spectra, and throw away those that are >.75 sigma worse than mean. BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Gradient) { Past = 1, Delta = 1e-6, MaxLineSearch = 15, Corrections = 20 }; Optimizer.Minimize(StartParams); #endregion #region Retrieve parameters TempCTF.Defocus = (decimal)MathHelper.Mean(Optimizer.Solution.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v)); TempCTF.PhaseShift = (decimal)Optimizer.Solution[StartParams.Length - 3]; TempCTF.DefocusDelta = (decimal)Optimizer.Solution[StartParams.Length - 2]; TempCTF.DefocusAngle = (decimal)(Optimizer.Solution[StartParams.Length - 1] * 20 / (Math.PI / 180)); if (TempCTF.DefocusDelta < 0) { TempCTF.DefocusAngle += 90; TempCTF.DefocusDelta *= -1; } TempCTF.DefocusAngle = ((int)TempCTF.DefocusAngle + 180 * 99) % 180; TempGrid = new CubicGrid(TempGrid.Dimensions, Optimizer.Solution.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v).ToArray()); #endregion // Dispose GPU resources manually because GC can't be bothered to do it in time. CTFSpectraPolarTrimmedHalf.Dispose(); CTFCoordsPolarTrimmedHalf.Dispose(); CTFSpectraScaleHalf.Dispose(); #region Get nicer envelope fit { { Image CTFSpectraBackground = new Image(new int3(DimsRegion), true); float[] CTFSpectraBackgroundData = CTFSpectraBackground.GetHost(Intent.Write)[0]; // Construct background in Cartesian coordinates. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { CTFSpectraBackgroundData[y * CTFSpectraBackground.DimsEffective.X + x] = TempBackground.Interp(r / DimsRegion.X); }); CTFSpectra.SubtractFromSlices(CTFSpectraBackground); float[] DefocusValues = TempGrid.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = DefocusValues.Select(v => { CTF Local = TempCTF.GetCopy(); Local.Defocus = (decimal)v + 0.0M; return Local.ToStruct(); }).ToArray(); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); CTF CTFAug = TempCTF.GetCopy(); CTFAug.Defocus += 0.0M; GPU.CTFMakeAverage(CTFSpectra.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFSpectra.ElementsSliceReal, (uint)DimsRegion.X, LocalParams, CTFAug.ToStruct(), 0, (uint)DimsRegion.X / 2, CTFSpectraConsider.Select(v => v ? 1 : 0).ToArray(), (uint)CTFSpectraGrid.Elements(), CTFAverage1D.GetDevice(Intent.Write)); CTFSpectra.AddToSlices(CTFSpectraBackground); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[TempPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(RotationalAverageData[i], 4) + TempBackground.Interp((float)i / DimsRegion.X)); MathHelper.UnNaN(ForPS1D); TempPS1D = ForPS1D; CTFSpectraBackground.Dispose(); CTFAverage1D.Dispose(); CTFSpectra.FreeDevice(); } TempCTF.Defocus = Math.Max(TempCTF.Defocus, MainWindow.Options.CTFZMin); UpdateBackgroundFit(); } #endregion } #endregion // Subtract background from 2D average and write it to disk. // This image is used for quick visualization purposes only. #region PS2D update { int3 DimsAverage = new int3(DimsRegion.X, DimsRegion.X / 2, 1); float[] Average2DData = new float[DimsAverage.Elements()]; float[] OriginalAverageData = CTFMean.GetHost(Intent.Read)[0]; for (int y = 0; y < DimsAverage.Y; y++) { int yy = y * y; for (int x = 0; x < DimsAverage.Y; x++) { int xx = DimsRegion.X / 2 - x - 1; xx *= xx; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x] = OriginalAverageData[(y + DimsRegion.X / 2) * (DimsRegion.X / 2 + 1) + x] - TempBackground.Interp(r); } for (int x = 0; x < DimsRegion.X / 2; x++) { int xx = x * x; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x + DimsRegion.X / 2] = OriginalAverageData[(DimsRegion.X / 2 - y) * (DimsRegion.X / 2 + 1) + (DimsRegion.X / 2 - 1 - x)] - TempBackground.Interp(r); } } thisPS2D = new Image(Average2DData, DimsAverage); } #endregion for (int i = 0; i < TempPS1D.Length; i++) TempPS1D[i].Y -= TempBackground.Interp(TempPS1D[i].X); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); thisPS1D = TempPS1D; thisBackground = TempBackground; thisScale = TempScale; thisCTF = TempCTF; thisGrid = TempGrid; }
public static Image GetVolumeFromAtoms(float3[] atoms, int3 dims, float sigma, float[] weights = null, float blobRadius = 1.0f, float blobAlpha = 6f) { if (weights == null) { weights = atoms.Select(v => 1f).ToArray(); } float BlobRadius = blobRadius * (sigma / 0.5f); float BlobAlpha = blobAlpha; int BlobOrder = 0; KaiserTable KaiserT = new KaiserTable(1000, BlobRadius, BlobAlpha, BlobOrder); int SigmaExtent = (int)Math.Ceiling(BlobRadius); float[] VolumeData = new float[dims.Elements()]; sigma = 2 * sigma * sigma; float[][] ParallelVolumes = new float[10][]; for (int i = 0; i < ParallelVolumes.Length; i++) { ParallelVolumes[i] = new float[VolumeData.Length]; } Parallel.For(0, 10, p => { for (int a = p; a < atoms.Length; a += 10) { float3 atom = atoms[a]; float weight = weights[a]; int3 IAtom = new int3(atom); int StartZ = Math.Max(0, IAtom.Z - SigmaExtent); int EndZ = Math.Min(dims.Z - 1, IAtom.Z + SigmaExtent); for (int z = StartZ; z <= EndZ; z++) { int StartY = Math.Max(0, IAtom.Y - SigmaExtent); int EndY = Math.Min(dims.Y - 1, IAtom.Y + SigmaExtent); for (int y = StartY; y <= EndY; y++) { int StartX = Math.Max(0, IAtom.X - SigmaExtent); int EndX = Math.Min(dims.X - 1, IAtom.X + SigmaExtent); for (int x = StartX; x <= EndX; x++) { float3 Pos = new float3(x, y, z); //ParallelVolumes[p][(z * dims.Y + y) * dims.X + x] += (float)Math.Exp(-(Pos - atom).LengthSq() / sigma) * weight; ParallelVolumes[p][(z * dims.Y + y) * dims.X + x] += KaiserT.GetValue((Pos - atom).Length()) * weight; } } } } }); for (int p = 0; p < ParallelVolumes.Length; p++) { for (int i = 0; i < VolumeData.Length; i++) { VolumeData[i] += ParallelVolumes[p][i]; } } return(new Image(VolumeData, dims)); }
public static float3[] FillWithEquidistantPoints(Image mask, int n, out float R) { float3 MaskCenter = mask.AsCenterOfMass(); float[] MaskData = mask.GetHostContinuousCopy(); int3 Dims = mask.Dims; float3[] BestSolution = null; float a = 0, b = Dims.X / 2; R = (a + b) / 2; float3 Offset = new float3(0, 0, 0); for (int o = 0; o < 2; o++) { for (int i = 0; i < 10; i++) { R = (a + b) / 2; float Root3 = (float)Math.Sqrt(3); float ZTerm = (float)(2 * Math.Sqrt(6) / 3); float SpacingX = R * 2; float SpacingY = Root3 * R; float SpacingZ = ZTerm * R; int3 DimsSphere = new int3(Math.Min(512, (int)Math.Ceiling(Dims.X / SpacingX)), Math.Min(512, (int)Math.Ceiling(Dims.Y / SpacingX)), Math.Min(512, (int)Math.Ceiling(Dims.Z / SpacingX))); BestSolution = new float3[DimsSphere.Elements()]; for (int z = 0; z < DimsSphere.Z; z++) { for (int y = 0; y < DimsSphere.Y; y++) { for (int x = 0; x < DimsSphere.X; x++) { BestSolution[DimsSphere.ElementFromPosition(x, y, z)] = new float3(2 * x + (y + z) % 2, Root3 * (y + 1 / 3f * (z % 2)), ZTerm * z) * R + Offset; } } } List <float3> InsideMask = BestSolution.Where(p => { int3 ip = new int3(p); if (ip.X >= 0 && ip.X < Dims.X && ip.Y >= 0 && ip.Y < Dims.Y && ip.Z >= 0 && ip.Z < Dims.Z) { return(MaskData[Dims.ElementFromPosition(new int3(p))] == 1); } return(false); }).ToList(); BestSolution = InsideMask.ToArray(); if (BestSolution.Length == n) { break; } else if (BestSolution.Length < n) { b = R; } else { a = R; } } float3 CenterOfPoints = MathHelper.Mean(BestSolution); Offset = MaskCenter - CenterOfPoints; a = 0.8f * R; b = 1.2f * R; } BestSolution = BestSolution.Select(v => v + Offset).ToArray(); return(BestSolution); }
public virtual void ProcessCTF(MapHeader originalHeader, Image originalStack, bool doastigmatism, decimal scaleFactor) { if (!Directory.Exists(PowerSpectrumDir)) Directory.CreateDirectory(PowerSpectrumDir); //CTF = new CTF(); PS1D = null; _SimulatedBackground = null; _SimulatedScale = new Cubic1D(new[] { new float2(0, 1), new float2(1, 1) }); #region Dimensions and grids int NFrames = originalHeader.Dimensions.Z; int2 DimsImage = new int2(originalHeader.Dimensions); int2 DimsRegion = new int2(MainWindow.Options.CTFWindow, MainWindow.Options.CTFWindow); float OverlapFraction = 0.5f; int2 DimsPositionGrid; int3[] PositionGrid = Helper.GetEqualGridSpacing(DimsImage, new int2(DimsRegion.X / 1, DimsRegion.Y / 1), OverlapFraction, out DimsPositionGrid); int NPositions = (int)DimsPositionGrid.Elements(); int CTFGridX = Math.Min(DimsPositionGrid.X, MainWindow.Options.GridCTFX); int CTFGridY = Math.Min(DimsPositionGrid.Y, MainWindow.Options.GridCTFY); int CTFGridZ = Math.Min(NFrames, MainWindow.Options.GridCTFZ); GridCTF = new CubicGrid(new int3(CTFGridX, CTFGridY, CTFGridZ)); GridCTFPhase = new CubicGrid(new int3(1, 1, CTFGridZ)); bool CTFSpace = CTFGridX * CTFGridY > 1; bool CTFTime = CTFGridZ > 1; int3 CTFSpectraGrid = new int3(CTFSpace ? DimsPositionGrid.X : 1, CTFSpace ? DimsPositionGrid.Y : 1, CTFTime ? CTFGridZ : 1); int MinFreqInclusive = (int)(MainWindow.Options.CTFRangeMin * DimsRegion.X / 2); int MaxFreqExclusive = (int)(MainWindow.Options.CTFRangeMax * DimsRegion.X / 2); int NFreq = MaxFreqExclusive - MinFreqInclusive; float PixelSize = (float)(MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5f; float PixelDelta = (float)(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin) * 0.5f; float PixelAngle = (float)MainWindow.Options.CTFPixelAngle / 180f * (float)Math.PI; #endregion #region Allocate GPU memory Image CTFSpectra = new Image(IntPtr.Zero, new int3(DimsRegion.X, DimsRegion.X, (int)CTFSpectraGrid.Elements()), true); Image CTFMean = new Image(IntPtr.Zero, new int3(DimsRegion), true); Image CTFCoordsCart = new Image(new int3(DimsRegion), true, true); Image CTFCoordsPolarTrimmed = new Image(new int3(NFreq, DimsRegion.X, 1), false, true); #endregion // Extract movie regions, create individual spectra in Cartesian coordinates and their mean. #region Create spectra GPU.CreateSpectra(originalStack.GetDevice(Intent.Read), DimsImage, NFrames, PositionGrid, NPositions, DimsRegion, CTFSpectraGrid, CTFSpectra.GetDevice(Intent.Write), CTFMean.GetDevice(Intent.Write)); originalStack.FreeDevice(); // Won't need it in this method anymore. #endregion // Populate address arrays for later. #region Init addresses { float2[] CoordsData = new float2[CTFCoordsCart.ElementsSliceComplex]; Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => CoordsData[y * (DimsRegion.X / 2 + 1) + x] = new float2(r, a)); CTFCoordsCart.UpdateHostWithComplex(new[] { CoordsData }); CoordsData = new float2[NFreq * DimsRegion.X]; Helper.ForEachElement(CTFCoordsPolarTrimmed.DimsSlice, (x, y) => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; float Ny = 1f / DimsRegion.X; CoordsData[y * NFreq + x] = new float2((x + MinFreqInclusive) * Ny, Angle); }); CTFCoordsPolarTrimmed.UpdateHostWithComplex(new[] { CoordsData }); } #endregion // Retrieve average 1D spectrum from CTFMean (not corrected for astigmatism yet). #region Initial 1D spectrum { Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMean.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMean.ElementsSliceReal, (uint)DimsRegion.X, new[] { new CTF().ToStruct() }, new CTF().ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] CTFAverage1DData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[DimsRegion.X / 2]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(CTFAverage1DData[i], 4)); _PS1D = ForPS1D; CTFAverage1D.Dispose(); } #endregion #region Background fitting methods Action UpdateBackgroundFit = () => { float2[] ForPS1D = PS1D.Skip(Math.Max(5, MinFreqInclusive / 2)).ToArray(); Cubic1D.FitCTF(ForPS1D, v => v.Select(x => CTF.Get1D(x / (float)CTF.PixelSize, true)).ToArray(), CTF.GetZeros(), CTF.GetPeaks(), out _SimulatedBackground, out _SimulatedScale); }; Action<bool> UpdateRotationalAverage = keepbackground => { float[] MeanData = CTFMean.GetHost(Intent.Read)[0]; Image CTFMeanCorrected = new Image(new int3(DimsRegion), true); float[] MeanCorrectedData = CTFMeanCorrected.GetHost(Intent.Write)[0]; // Subtract current background estimate from spectra, populate coords. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { int i = y * (DimsRegion.X / 2 + 1) + x; MeanCorrectedData[i] = MeanData[i] - _SimulatedBackground.Interp(r / DimsRegion.X); }); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMeanCorrected.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMeanCorrected.DimsEffective.ElementsSlice(), (uint)DimsRegion.X, new[] { CTF.ToStruct() }, CTF.ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[PS1D.Length]; if (keepbackground) for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i] + _SimulatedBackground.Interp((float)i / DimsRegion.X)); else for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i]); MathHelper.UnNaN(ForPS1D); _PS1D = ForPS1D; CTFMeanCorrected.Dispose(); CTFAverage1D.Dispose(); }; #endregion // Fit background to currently best average (not corrected for astigmatism yet). { float2[] ForPS1D = PS1D.Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); int NumNodes = Math.Max(3, (int)((MainWindow.Options.CTFRangeMax - MainWindow.Options.CTFRangeMin) * 5M)); _SimulatedBackground = Cubic1D.Fit(ForPS1D, NumNodes); // This won't fit falloff and scale, because approx function is 0 float[] CurrentBackground = _SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); float[] Subtracted1D = new float[ForPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) Subtracted1D[i] = ForPS1D[i].Y - CurrentBackground[i]; MathHelper.NormalizeInPlace(Subtracted1D); float ZMin = (float)MainWindow.Options.CTFZMin; float ZMax = (float)MainWindow.Options.CTFZMax; float ZStep = (ZMax - ZMin) / 100f; float BestZ = 0, BestPhase = 0, BestScore = -999; for (float z = ZMin; z <= ZMax + 1e-5f; z += ZStep) { for (float p = 0; p <= (MainWindow.Options.CTFDoPhase ? 1f : 0f); p += 0.01f) { CTF CurrentParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)z, PhaseShift = (decimal)p, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; float[] SimulatedCTF = CurrentParams.Get1D(PS1D.Length, true).Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); MathHelper.NormalizeInPlace(SimulatedCTF); float Score = MathHelper.CrossCorrelate(Subtracted1D, SimulatedCTF); if (Score > BestScore) { BestScore = Score; BestZ = z; BestPhase = p; } } } CTF = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)BestZ, PhaseShift = (decimal)BestPhase, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. } // Fit defocus, (phase shift), (astigmatism) to average background-subtracted spectrum, // which is in polar coords at this point (for equal weighting of all frequencies). #region Grid search { Image CTFMeanPolarTrimmed = CTFMean.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq / 1)); // Subtract current background. Image CurrentBackground = new Image(_SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 1).ToArray()); CTFMeanPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); /*Image WaterMask = new Image(new int3(NFreq, 1, 1)); float[] WaterData = WaterMask.GetHost(Intent.Write)[0]; for (int i = 0; i < NFreq; i++) { float f = (i + MinFreqInclusive) / (float)DimsRegion.X * 2f; WaterData[i] = f > 0.2f && f < 0.6f ? 0f : 1f; } //CTFMeanPolarTrimmed.MultiplyLines(WaterMask); WaterMask.Dispose();*/ // Normalize for CC (not strictly needed, but it's converted for fp16 later, so let's be on the safe side of the fp16 range. GPU.Normalize(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.GetDevice(Intent.Write), (uint)CTFMeanPolarTrimmed.ElementsReal, 1); //CTFMeanPolarTrimmed.WriteMRC("ctfmeanpolartrimmed.mrc"); CTF StartParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, PixelSizeDelta = Math.Abs(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin), PixelSizeAngle = MainWindow.Options.CTFPixelAngle, Defocus = CTF.Defocus,// (MainWindow.Options.CTFZMin + MainWindow.Options.CTFZMax) * 0.5M, DefocusDelta = doastigmatism ? 0 : MainWindow.Options.CTFAstigmatism, DefocusAngle = doastigmatism ? 0 : MainWindow.Options.CTFAstigmatismAngle, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; CTFFitStruct FitParams = new CTFFitStruct { //Pixelsize = new float3(-0.02e-10f, 0.02e-10f, 0.01e-10f), //Pixeldelta = new float3(0.0f, 0.02e-10f, 0.01e-10f), //Pixelangle = new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18), //Defocus = new float3((float)(MainWindow.Options.CTFZMin - StartParams.Defocus) * 1e-6f, // (float)(MainWindow.Options.CTFZMax - StartParams.Defocus) * 1e-6f, // 0.025e-6f), Defocus = new float3(-0.4e-6f, 0.4e-6f, 0.025e-6f), Defocusdelta = doastigmatism ? new float3(0, 0.8e-6f, 0.02e-6f) : new float3(0, 0, 0), Astigmatismangle = doastigmatism ? new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18) : new float3(0, 0, 0), Phaseshift = MainWindow.Options.CTFDoPhase ? new float3(0, (float)Math.PI, 0.025f * (float)Math.PI) : new float3(0, 0, 0) }; CTFStruct ResultStruct = GPU.CTFFitMean(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFCoordsPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.DimsSlice, StartParams.ToStruct(), FitParams, doastigmatism); CTF.FromStruct(ResultStruct); CTF.Defocus = Math.Max(CTF.Defocus, MainWindow.Options.CTFZMin); CTFMeanPolarTrimmed.Dispose(); UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. UpdateRotationalAverage(true); // This time, with the nice background. UpdateBackgroundFit(); // Make the background even nicer! } #endregion /*for (int i = 0; i < PS1D.Length; i++) PS1D[i].Y -= SimulatedBackground.Interp(PS1D[i].X); SimulatedBackground = new Cubic1D(SimulatedBackground.Data.Select(v => new float2(v.X, 0f)).ToArray()); OnPropertyChanged("PS1D"); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); Simulated1D = GetSimulated1D(); CTFQuality = GetCTFQuality(); return;*/ // Do BFGS optimization of defocus, astigmatism and phase shift, // using 2D simulation for comparison #region BFGS bool[] CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; for (int i = 0; i < CTFSpectraConsider.Length; i++) CTFSpectraConsider[i] = true; int NCTFSpectraConsider = CTFSpectraConsider.Length; GridCTF = new CubicGrid(GridCTF.Dimensions, (float)CTF.Defocus, (float)CTF.Defocus, Dimension.X); GridCTFPhase = new CubicGrid(GridCTFPhase.Dimensions, (float)CTF.PhaseShift, (float)CTF.PhaseShift, Dimension.X); for (int preciseFit = 2; preciseFit < 3; preciseFit++) { NFreq = (MaxFreqExclusive - MinFreqInclusive) * (preciseFit + 1) / 3; //if (preciseFit >= 2) // NFreq = MaxFreqExclusive - MinFreqInclusive; Image CTFSpectraPolarTrimmed = CTFSpectra.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq)); CTFSpectra.FreeDevice(); // This will only be needed again for the final PS1D. #region Create background and scale float[] CurrentScale = _SimulatedScale.Interp(PS1D.Select(p => p.X).ToArray()); Image CTFSpectraScale = new Image(new int3(NFreq, DimsRegion.X, 1)); float[] CTFSpectraScaleData = CTFSpectraScale.GetHost(Intent.Write)[0]; // Trim polar to relevant frequencies, and populate coordinates. Parallel.For(0, DimsRegion.X, y => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; for (int x = 0; x < NFreq; x++) CTFSpectraScaleData[y * NFreq + x] = CurrentScale[x + MinFreqInclusive]; }); //CTFSpectraScale.WriteMRC("ctfspectrascale.mrc"); // Background is just 1 line since we're in polar. Image CurrentBackground = new Image(_SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq).ToArray()); #endregion CTFSpectraPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize background-subtracted spectra. GPU.Normalize(CTFSpectraPolarTrimmed.GetDevice(Intent.Read), CTFSpectraPolarTrimmed.GetDevice(Intent.Write), (uint)CTFSpectraPolarTrimmed.ElementsSliceReal, (uint)CTFSpectraGrid.Elements()); //CTFSpectraPolarTrimmed.WriteMRC("ctfspectrapolartrimmed.mrc"); #region Convert to fp16 Image CTFSpectraPolarTrimmedHalf = CTFSpectraPolarTrimmed.AsHalf(); CTFSpectraPolarTrimmed.Dispose(); Image CTFSpectraScaleHalf = CTFSpectraScale.AsHalf(); CTFSpectraScale.Dispose(); Image CTFCoordsPolarTrimmedHalf = CTFCoordsPolarTrimmed.AsHalf(); #endregion // Wiggle weights show how the defocus on the spectra grid is altered // by changes in individual anchor points of the spline grid. // They are used later to compute the dScore/dDefocus values for each spectrum // only once, and derive the values for each anchor point from them. float[][] WiggleWeights = GridCTF.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 1f / (CTFGridZ + 1))); float[][] WiggleWeightsPhase = GridCTFPhase.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 1f / (CTFGridZ + 1))); // Helper method for getting CTFStructs for the entire spectra grid. Func<double[], CTF, float[], float[], CTFStruct[]> EvalGetCTF = (input, ctf, defocusValues, phaseValues) => { decimal AlteredDelta = (decimal)input[input.Length - 2]; decimal AlteredAngle = (decimal)(input[input.Length - 1] * 20 / (Math.PI / 180)); CTF Local = ctf.GetCopy(); Local.DefocusDelta = AlteredDelta; Local.DefocusAngle = AlteredAngle; CTFStruct LocalStruct = Local.ToStruct(); CTFStruct[] LocalParams = new CTFStruct[defocusValues.Length]; for (int i = 0; i < LocalParams.Length; i++) { LocalParams[i] = LocalStruct; LocalParams[i].Defocus = defocusValues[i] * -1e-6f; LocalParams[i].PhaseShift = phaseValues[i] * (float)Math.PI; } return LocalParams; }; // Simulate with adjusted CTF, compare to originals #region Eval and Gradient methods float BorderZ = 0.5f / CTFGridZ; Func<double[], double> Eval = input => { CubicGrid Altered = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float Score = 0; for (int i = 0; i < Result.Length; i++) if (CTFSpectraConsider[i]) Score += Result[i]; Score /= NCTFSpectraConsider; if (float.IsNaN(Score) || float.IsInfinity(Score)) throw new Exception("Bad score."); return (1.0 - Score) * 1000.0; }; Func<double[], double[]> Gradient = input => { const float Step = 0.005f; double[] Result = new double[input.Length]; // In 0D grid case, just get gradient for all 4 parameters. // In 1+D grid case, do simple gradient for astigmatism and phase... int StartComponent = input.Length - 2; //int StartComponent = 0; for (int i = StartComponent; i < input.Length; i++) { double[] UpperInput = new double[input.Length]; input.CopyTo(UpperInput, 0); UpperInput[i] += Step; double UpperValue = Eval(UpperInput); double[] LowerInput = new double[input.Length]; input.CopyTo(LowerInput, 0); LowerInput[i] -= Step; double LowerValue = Eval(LowerInput); Result[i] = (UpperValue - LowerValue) / (2f * Step); } float[] ResultPlus = new float[CTFSpectraGrid.Elements()]; float[] ResultMinus = new float[CTFSpectraGrid.Elements()]; // ..., take shortcut for defoci... { CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); { CubicGrid AlteredPlus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredMinus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] DefocusValues = AlteredMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, GridCTF.Dimensions.Elements(), i => Result[i] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeights[i]) / LocalGradients.Length / (2f * Step) * 1000f); } // ..., and take shortcut for phases. if (MainWindow.Options.CTFDoPhase) { CubicGrid AlteredPlus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); { CubicGrid AlteredPhasePlus = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] PhaseValues = AlteredPhasePlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredPhaseMinus = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] PhaseValues = AlteredPhaseMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, GridCTFPhase.Dimensions.Elements(), i => Result[i + GridCTF.Dimensions.Elements()] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeightsPhase[i]) / LocalGradients.Length / (2f * Step) * 1000f); } foreach (var i in Result) if (double.IsNaN(i) || double.IsInfinity(i)) throw new Exception("Bad score."); return Result; }; #endregion #region Minimize first time with potential outpiers double[] StartParams = new double[GridCTF.Dimensions.Elements() + GridCTFPhase.Dimensions.Elements() + 2]; for (int i = 0; i < GridCTF.Dimensions.Elements(); i++) StartParams[i] = GridCTF.FlatValues[i]; for (int i = 0; i < GridCTFPhase.Dimensions.Elements(); i++) StartParams[i + GridCTF.Dimensions.Elements()] = GridCTFPhase.FlatValues[i]; StartParams[StartParams.Length - 2] = (double)CTF.DefocusDelta; StartParams[StartParams.Length - 1] = (double)CTF.DefocusAngle / 20 * (Math.PI / 180); // Compute correlation for individual spectra, and throw away those that are >.75 sigma worse than mean. #region Discard outliers if (CTFSpace || CTFTime) { CubicGrid Altered = new CubicGrid(GridCTF.Dimensions, StartParams.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, StartParams.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(StartParams, CTF, DefocusValues, PhaseValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float MeanResult = MathHelper.Mean(Result); float StdResult = MathHelper.StdDev(Result); CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; Parallel.For(0, CTFSpectraConsider.Length, i => { //if (Result[i] > MeanResult - StdResult * 1.5f) CTFSpectraConsider[i] = true; /*else { CTFSpectraConsider[i] = false; for (int j = 0; j < WiggleWeights.Length; j++) // Make sure the spectrum's gradient doesn't affect the overall gradient. WiggleWeights[j][i] = 0; }*/ }); NCTFSpectraConsider = CTFSpectraConsider.Where(v => v).Count(); } #endregion BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Gradient) { Past = 1, Delta = 1e-6, MaxLineSearch = 15, Corrections = 20 }; Optimizer.Minimize(StartParams); #endregion #region Retrieve parameters CTF.Defocus = (decimal)MathHelper.Mean(Optimizer.Solution.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v)); CTF.DefocusDelta = (decimal)Optimizer.Solution[StartParams.Length - 2]; CTF.DefocusAngle = (decimal)(Optimizer.Solution[StartParams.Length - 1] * 20 / (Math.PI / 180)); CTF.PhaseShift = (decimal)MathHelper.Mean(Optimizer.Solution.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v)); if (CTF.DefocusDelta < 0) { CTF.DefocusAngle += 90; CTF.DefocusDelta *= -1; } CTF.DefocusAngle = ((int)CTF.DefocusAngle + 180 * 99) % 180; GridCTF = new CubicGrid(GridCTF.Dimensions, Optimizer.Solution.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); GridCTFPhase = new CubicGrid(GridCTFPhase.Dimensions, Optimizer.Solution.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); #endregion // Dispose GPU resources manually because GC can't be bothered to do it in time. CTFSpectraPolarTrimmedHalf.Dispose(); CTFCoordsPolarTrimmedHalf.Dispose(); CTFSpectraScaleHalf.Dispose(); #region Get nicer envelope fit if (preciseFit >= 2) { if (!CTFSpace && !CTFTime) { UpdateRotationalAverage(true); } else { Image CTFSpectraBackground = new Image(new int3(DimsRegion), true); float[] CTFSpectraBackgroundData = CTFSpectraBackground.GetHost(Intent.Write)[0]; // Construct background in Cartesian coordinates. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { CTFSpectraBackgroundData[y * CTFSpectraBackground.DimsEffective.X + x] = _SimulatedBackground.Interp(r / DimsRegion.X); }); CTFSpectra.SubtractFromSlices(CTFSpectraBackground); float[] DefocusValues = GridCTF.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = DefocusValues.Select(v => { CTF Local = CTF.GetCopy(); Local.Defocus = (decimal)v + 0.0M; return Local.ToStruct(); }).ToArray(); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); CTF CTFAug = CTF.GetCopy(); CTFAug.Defocus += 0.0M; GPU.CTFMakeAverage(CTFSpectra.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFSpectra.ElementsSliceReal, (uint)DimsRegion.X, LocalParams, CTFAug.ToStruct(), 0, (uint)DimsRegion.X / 2, CTFSpectraConsider.Select(v => v ? 1 : 0).ToArray(), (uint)CTFSpectraGrid.Elements(), CTFAverage1D.GetDevice(Intent.Write)); CTFSpectra.AddToSlices(CTFSpectraBackground); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[PS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(RotationalAverageData[i], 4) + _SimulatedBackground.Interp((float)i / DimsRegion.X)); MathHelper.UnNaN(ForPS1D); _PS1D = ForPS1D; CTFSpectraBackground.Dispose(); CTFAverage1D.Dispose(); CTFSpectra.FreeDevice(); } CTF.Defocus = Math.Max(CTF.Defocus, MainWindow.Options.CTFZMin); UpdateBackgroundFit(); } #endregion } #endregion // Subtract background from 2D average and write it to disk. // This image is used for quick visualization purposes only. #region PS2D update { int3 DimsAverage = new int3(DimsRegion.X, DimsRegion.X / 2, 1); float[] Average2DData = new float[DimsAverage.Elements()]; float[] OriginalAverageData = CTFMean.GetHost(Intent.Read)[0]; for (int y = 0; y < DimsAverage.Y; y++) { int yy = y * y; for (int x = 0; x < DimsAverage.Y; x++) { int xx = DimsRegion.X / 2 - x - 1; xx *= xx; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x] = OriginalAverageData[(y + DimsRegion.X / 2) * (DimsRegion.X / 2 + 1) + x] - SimulatedBackground.Interp(r); } for (int x = 0; x < DimsRegion.X / 2; x++) { int xx = x * x; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x + DimsRegion.X / 2] = OriginalAverageData[(DimsRegion.X / 2 - y) * (DimsRegion.X / 2 + 1) + (DimsRegion.X / 2 - 1 - x)] - SimulatedBackground.Interp(r); } } IOHelper.WriteMapFloat(PowerSpectrumPath, new HeaderMRC { Dimensions = DimsAverage, MinValue = MathHelper.Min(Average2DData), MaxValue = MathHelper.Max(Average2DData) }, Average2DData); PS2DTemp = null; OnPropertyChanged("PS2D"); } #endregion for (int i = 0; i < PS1D.Length; i++) PS1D[i].Y -= SimulatedBackground.Interp(PS1D[i].X); SimulatedBackground = new Cubic1D(SimulatedBackground.Data.Select(v => new float2(v.X, 0f)).ToArray()); OnPropertyChanged("PS1D"); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); Simulated1D = GetSimulated1D(); CTFQuality = GetCTFQuality(); SaveMeta(); }
public void ProcessShift(MapHeader originalHeader, Image originalStack, decimal scaleFactor) { // Deal with dimensions and grids. int NFrames = originalHeader.Dimensions.Z; int2 DimsImage = new int2(originalHeader.Dimensions); int2 DimsRegion = new int2(768, 768); float OverlapFraction = 0.0f; int2 DimsPositionGrid; int3[] PositionGrid = Helper.GetEqualGridSpacing(DimsImage, DimsRegion, OverlapFraction, out DimsPositionGrid); //PositionGrid = new[] { new int3(0, 0, 0) }; //DimsPositionGrid = new int2(1, 1); int NPositions = PositionGrid.Length; int ShiftGridX = 1; int ShiftGridY = 1; int ShiftGridZ = Math.Min(NFrames, MainWindow.Options.GridMoveZ); GridMovementX = new CubicGrid(new int3(ShiftGridX, ShiftGridY, ShiftGridZ)); GridMovementY = new CubicGrid(new int3(ShiftGridX, ShiftGridY, ShiftGridZ)); int LocalGridX = Math.Min(DimsPositionGrid.X, MainWindow.Options.GridMoveX); int LocalGridY = Math.Min(DimsPositionGrid.Y, MainWindow.Options.GridMoveY); int LocalGridZ = Math.Min(2, NFrames); GridLocalX = new CubicGrid(new int3(LocalGridX, LocalGridY, LocalGridZ)); GridLocalY = new CubicGrid(new int3(LocalGridX, LocalGridY, LocalGridZ)); int3 ShiftGrid = new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames); int MinFreqInclusive = (int)(MainWindow.Options.MovementRangeMin * DimsRegion.X / 2); int MaxFreqExclusive = (int)(MainWindow.Options.MovementRangeMax * DimsRegion.X / 2); int NFreq = MaxFreqExclusive - MinFreqInclusive; int CentralFrame = NFrames / 2; int MaskExpansions = Math.Max(1, ShiftGridZ / 3); int[] MaskSizes = new int[MaskExpansions]; // Allocate memory and create all prerequisites: int MaskLength; Image ShiftFactors; Image Phases; Image PhasesAverage; Image Shifts; { List<long> Positions = new List<long>(); List<float2> Factors = new List<float2>(); List<float2> Freq = new List<float2>(); int Min2 = MinFreqInclusive * MinFreqInclusive; int Max2 = MaxFreqExclusive * MaxFreqExclusive; float PixelSize = (float)(MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5f; float PixelDelta = (float)(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin) * 0.5f; float PixelAngle = (float)MainWindow.Options.CTFPixelAngle; for (int y = 0; y < DimsRegion.Y; y++) { int yy = y - DimsRegion.X / 2; for (int x = 0; x < DimsRegion.X / 2 + 1; x++) { int xx = x - DimsRegion.X / 2; int r2 = xx * xx + yy * yy; if (r2 >= Min2 && r2 < Max2) { Positions.Add(y * (DimsRegion.X / 2 + 1) + x); Factors.Add(new float2((float)xx / DimsRegion.X * 2f * (float)Math.PI, (float)yy / DimsRegion.X * 2f * (float)Math.PI)); float Angle = (float)Math.Atan2(yy, xx); float r = (float)Math.Sqrt(r2); Freq.Add(new float2(r, Angle)); } } } // Sort everyone with ascending distance from center. List<KeyValuePair<float, int>> FreqIndices = Freq.Select((v, i) => new KeyValuePair<float, int>(v.X, i)).ToList(); FreqIndices.Sort((a, b) => a.Key.CompareTo(b.Key)); int[] SortedIndices = FreqIndices.Select(v => v.Value).ToArray(); Helper.Reorder(Positions, SortedIndices); Helper.Reorder(Factors, SortedIndices); Helper.Reorder(Freq, SortedIndices); float Bfac = (float)MainWindow.Options.MovementBfactor * 0.25f / PixelSize / DimsRegion.X; float2[] BfacWeightsData = Freq.Select(v => (float)Math.Exp(v.X * Bfac)).Select(v => new float2(v, v)).ToArray(); Image BfacWeights = new Image(Helper.ToInterleaved(BfacWeightsData), false, false, false); long[] RelevantMask = Positions.ToArray(); ShiftFactors = new Image(Helper.ToInterleaved(Factors.ToArray())); MaskLength = RelevantMask.Length; // Get mask sizes for different expansion steps. for (int i = 0; i < MaskExpansions; i++) { float CurrentMaxFreq = MinFreqInclusive + (MaxFreqExclusive - MinFreqInclusive) / (float)MaskExpansions * (i + 1); MaskSizes[i] = Freq.Count(v => v.X * v.X < CurrentMaxFreq * CurrentMaxFreq); } Phases = new Image(IntPtr.Zero, new int3(MaskLength * 2, DimsPositionGrid.X * DimsPositionGrid.Y, NFrames), false, false, false); GPU.CreateShift(originalStack.GetDevice(Intent.Read), new int2(originalHeader.Dimensions), originalHeader.Dimensions.Z, PositionGrid, PositionGrid.Length, DimsRegion, RelevantMask, (uint)MaskLength, Phases.GetDevice(Intent.Write)); Phases.MultiplyLines(BfacWeights); BfacWeights.Dispose(); originalStack.FreeDevice(); PhasesAverage = new Image(IntPtr.Zero, new int3(MaskLength, NPositions, 1), false, true, false); Shifts = new Image(new float[NPositions * NFrames * 2]); } #region Fit global movement { int MinXSteps = 1, MinYSteps = 1; int MinZSteps = Math.Min(NFrames, 3); int3 ExpansionGridSize = new int3(MinXSteps, MinYSteps, MinZSteps); float[][] WiggleWeights = new CubicGrid(ExpansionGridSize).GetWiggleWeights(ShiftGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); double[] StartParams = new double[ExpansionGridSize.Elements() * 2]; for (int m = 0; m < MaskExpansions; m++) { double[] LastAverage = null; Action<double[]> SetPositions = input => { // Construct CubicGrids and get interpolated shift values. CubicGrid AlteredGridX = new CubicGrid(ExpansionGridSize, input.Where((v, i) => i % 2 == 0).Select(v => (float)v).ToArray()); float[] AlteredX = AlteredGridX.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); CubicGrid AlteredGridY = new CubicGrid(ExpansionGridSize, input.Where((v, i) => i % 2 == 1).Select(v => (float)v).ToArray()); float[] AlteredY = AlteredGridY.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); // Let movement start at 0 in the central frame. /*float2[] CenterFrameOffsets = new float2[NPositions]; for (int i = 0; i < NPositions; i++) CenterFrameOffsets[i] = new float2(AlteredX[CentralFrame * NPositions + i], AlteredY[CentralFrame * NPositions + i]);*/ // Finally, set the shift values in the device array. float[] ShiftData = Shifts.GetHost(Intent.Write)[0]; Parallel.For(0, AlteredX.Length, i => { ShiftData[i * 2] = AlteredX[i];// - CenterFrameOffsets[i % NPositions].X; ShiftData[i * 2 + 1] = AlteredY[i];// - CenterFrameOffsets[i % NPositions].Y; }); }; Action<double[]> DoAverage = input => { if (LastAverage == null || input.Where((t, i) => t != LastAverage[i]).Any()) { SetPositions(input); GPU.ShiftGetAverage(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Write), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), (uint)NPositions, (uint)NFrames); if (LastAverage == null) LastAverage = new double[input.Length]; Array.Copy(input, LastAverage, input.Length); } }; Func<double[], double> Eval = input => { DoAverage(input); float[] Diff = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), Diff, (uint)NPositions, (uint)NFrames); for (int i = 0; i < Diff.Length; i++) Diff[i] = Diff[i];// * 100f; return Diff.Sum(); }; Func<double[], double[]> Grad = input => { DoAverage(input); float[] GradX = new float[NPositions * NFrames], GradY = new float[NPositions * NFrames]; float[] Diff = new float[NPositions * NFrames * 2]; GPU.ShiftGetGrad(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), Diff, (uint)NPositions, (uint)NFrames); //for (int i = 0; i < Diff.Length; i++) //Diff[i] = Diff[i] * 100f; for (int i = 0; i < GradX.Length; i++) { GradX[i] = Diff[i * 2]; GradY[i] = Diff[i * 2 + 1]; } double[] Result = new double[input.Length]; Parallel.For(0, input.Length / 2, i => { Result[i * 2] = MathHelper.ReduceWeighted(GradX, WiggleWeights[i]); Result[i * 2 + 1] = MathHelper.ReduceWeighted(GradY, WiggleWeights[i]); }); return Result; }; /*Func<double[], double[]> Grad = input => { DoAverage(input); float[] GradX = new float[NPositions * NFrames], GradY = new float[NPositions * NFrames]; float Step = 0.002f; { double[] InputXP = new double[input.Length]; for (int i = 0; i < input.Length; i++) if (i % 2 == 0) InputXP[i] = input[i] + Step; else InputXP[i] = input[i]; SetPositions(InputXP); float[] DiffXP = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), DiffXP, (uint)NPositions, (uint)NFrames); double[] InputXM = new double[input.Length]; for (int i = 0; i < input.Length; i++) if (i % 2 == 0) InputXM[i] = input[i] - Step; else InputXM[i] = input[i]; SetPositions(InputXM); float[] DiffXM = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), DiffXM, (uint)NPositions, (uint)NFrames); for (int i = 0; i < GradX.Length; i++) GradX[i] = (DiffXP[i] - DiffXM[i]) / (Step * 2); } { double[] InputYP = new double[input.Length]; for (int i = 0; i < input.Length; i++) if (i % 2 == 1) InputYP[i] = input[i] + Step; else InputYP[i] = input[i]; SetPositions(InputYP); float[] DiffYP = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), DiffYP, (uint)NPositions, (uint)NFrames); double[] InputYM = new double[input.Length]; for (int i = 0; i < input.Length; i++) if (i % 2 == 1) InputYM[i] = input[i] - Step; else InputYM[i] = input[i]; SetPositions(InputYM); float[] DiffYM = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), DiffYM, (uint)NPositions, (uint)NFrames); for (int i = 0; i < GradY.Length; i++) GradY[i] = (DiffYP[i] - DiffYM[i]) / (Step * 2); } double[] Result = new double[input.Length]; Parallel.For(0, input.Length / 2, i => { Result[i * 2] = MathHelper.ReduceWeighted(GradX, WiggleWeights[i]); Result[i * 2 + 1] = MathHelper.ReduceWeighted(GradY, WiggleWeights[i]); }); return Result; };*/ BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Grad); Optimizer.Corrections = 20; Optimizer.Minimize(StartParams); float MeanX = MathHelper.Mean(Optimizer.Solution.Where((v, i) => i % 2 == 0).Select(v => (float)v)); float MeanY = MathHelper.Mean(Optimizer.Solution.Where((v, i) => i % 2 == 1).Select(v => (float)v)); for (int i = 0; i < ExpansionGridSize.Elements(); i++) { Optimizer.Solution[i * 2] -= MeanX; Optimizer.Solution[i * 2 + 1] -= MeanY; } // Store coarse values in grids. GridMovementX = new CubicGrid(ExpansionGridSize, Optimizer.Solution.Where((v, i) => i % 2 == 0).Select(v => (float)v).ToArray()); GridMovementY = new CubicGrid(ExpansionGridSize, Optimizer.Solution.Where((v, i) => i % 2 == 1).Select(v => (float)v).ToArray()); if (m < MaskExpansions - 1) { // Refine sampling. ExpansionGridSize = new int3((int)Math.Round((float)(ShiftGridX - MinXSteps) / (MaskExpansions - 1) * (m + 1) + MinXSteps), (int)Math.Round((float)(ShiftGridY - MinYSteps) / (MaskExpansions - 1) * (m + 1) + MinYSteps), (int)Math.Round((float)(ShiftGridZ - MinZSteps) / (MaskExpansions - 1) * (m + 1) + MinZSteps)); WiggleWeights = new CubicGrid(ExpansionGridSize).GetWiggleWeights(ShiftGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); // Resize the grids to account for finer sampling. GridMovementX = GridMovementX.Resize(ExpansionGridSize); GridMovementY = GridMovementY.Resize(ExpansionGridSize); // Construct start parameters for next optimization iteration. StartParams = new double[ExpansionGridSize.Elements() * 2]; for (int i = 0; i < ExpansionGridSize.Elements(); i++) { StartParams[i * 2] = GridMovementX.FlatValues[i]; StartParams[i * 2 + 1] = GridMovementY.FlatValues[i]; } } } } #endregion // Center the global shifts /*{ float2[] AverageShifts = new float2[ShiftGridZ]; for (int i = 0; i < AverageShifts.Length; i++) AverageShifts[i] = new float2(MathHelper.Mean(GridMovementX.GetSliceXY(i)), MathHelper.Mean(GridMovementY.GetSliceXY(i))); float2 CenterShift = MathHelper.Mean(AverageShifts); GridMovementX = new CubicGrid(GridMovementX.Dimensions, GridMovementX.FlatValues.Select(v => v - CenterShift.X).ToArray()); GridMovementY = new CubicGrid(GridMovementY.Dimensions, GridMovementY.FlatValues.Select(v => v - CenterShift.Y).ToArray()); }*/ #region Fit local movement /*{ int MinXSteps = LocalGridX, MinYSteps = LocalGridY; int MinZSteps = LocalGridZ; int3 ExpansionGridSize = new int3(MinXSteps, MinYSteps, MinZSteps); float[][] WiggleWeights = new CubicGrid(ExpansionGridSize).GetWiggleWeights(ShiftGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); double[] StartParams = new double[ExpansionGridSize.Elements() * 2]; for (int m = MaskExpansions - 1; m < MaskExpansions; m++) { double[] LastAverage = null; Action<double[]> SetPositions = input => { // Construct CubicGrids and get interpolated shift values. float[] GlobalX = GridMovementX.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); CubicGrid AlteredGridX = new CubicGrid(ExpansionGridSize, input.Where((v, i) => i % 2 == 0).Select(v => (float)v).ToArray()); float[] AlteredX = AlteredGridX.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); AlteredX = MathHelper.Plus(GlobalX, AlteredX); float[] GlobalY = GridMovementY.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); CubicGrid AlteredGridY = new CubicGrid(ExpansionGridSize, input.Where((v, i) => i % 2 == 1).Select(v => (float)v).ToArray()); float[] AlteredY = AlteredGridY.GetInterpolatedNative(new int3(DimsPositionGrid.X, DimsPositionGrid.Y, NFrames), new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); AlteredY = MathHelper.Plus(GlobalY, AlteredY); // Let movement start at 0 in the central frame. float2[] CenterFrameOffsets = new float2[NPositions]; for (int i = 0; i < NPositions; i++) CenterFrameOffsets[i] = new float2(AlteredX[CentralFrame * NPositions + i], AlteredY[CentralFrame * NPositions + i]); // Finally, set the shift values in the device array. float[] ShiftData = Shifts.GetHost(Intent.Write)[0]; Parallel.For(0, AlteredX.Length, i => { ShiftData[i * 2] = AlteredX[i] - CenterFrameOffsets[i % NPositions].X; ShiftData[i * 2 + 1] = AlteredY[i] - CenterFrameOffsets[i % NPositions].Y; }); }; Action<double[]> DoAverage = input => { if (LastAverage == null || input.Where((t, i) => t != LastAverage[i]).Any()) { SetPositions(input); GPU.ShiftGetAverage(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Write), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), (uint)NPositions, (uint)NFrames); if (LastAverage == null) LastAverage = new double[input.Length]; Array.Copy(input, LastAverage, input.Length); } }; Func<double[], double> Eval = input => { DoAverage(input); float[] Diff = new float[NPositions * NFrames]; GPU.ShiftGetDiff(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), Diff, (uint)NPositions, (uint)NFrames); for (int i = 0; i < Diff.Length; i++) Diff[i] = Diff[i] * 100f; return MathHelper.Mean(Diff); }; Func<double[], double[]> Grad = input => { DoAverage(input); float[] Diff = new float[NPositions * NFrames * 2]; GPU.ShiftGetGrad(Phases.GetDevice(Intent.Read), PhasesAverage.GetDevice(Intent.Read), ShiftFactors.GetDevice(Intent.Read), (uint)MaskLength, (uint)MaskSizes[m], Shifts.GetDevice(Intent.Read), Diff, (uint)NPositions, (uint)NFrames); for (int i = 0; i < Diff.Length; i++) Diff[i] = Diff[i] * 100f; float[] DiffX = new float[NPositions * NFrames], DiffY = new float[NPositions * NFrames]; for (int i = 0; i < DiffX.Length; i++) { DiffX[i] = Diff[i * 2]; DiffY[i] = Diff[i * 2 + 1]; } double[] Result = new double[input.Length]; Parallel.For(0, input.Length / 2, i => { Result[i * 2] = MathHelper.ReduceWeighted(DiffX, WiggleWeights[i]); Result[i * 2 + 1] = MathHelper.ReduceWeighted(DiffY, WiggleWeights[i]); }); return Result; }; BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Grad); Optimizer.Corrections = 20; Optimizer.Minimize(StartParams); float MeanX = MathHelper.Mean(Optimizer.Solution.Where((v, i) => i % 2 == 0).Select(v => (float)v)); float MeanY = MathHelper.Mean(Optimizer.Solution.Where((v, i) => i % 2 == 1).Select(v => (float)v)); for (int i = 0; i < ExpansionGridSize.Elements(); i++) { Optimizer.Solution[i * 2] -= MeanX; Optimizer.Solution[i * 2 + 1] -= MeanY; } // Store coarse values in grids. GridLocalX = new CubicGrid(ExpansionGridSize, Optimizer.Solution.Where((v, i) => i % 2 == 0).Select(v => (float)v).ToArray()); GridLocalY = new CubicGrid(ExpansionGridSize, Optimizer.Solution.Where((v, i) => i % 2 == 1).Select(v => (float)v).ToArray()); if (m < MaskExpansions - 1) { // Refine sampling. ExpansionGridSize = new int3((int)Math.Round((float)(LocalGridX - MinXSteps) / (MaskExpansions - 1) * (m + 1) + MinXSteps), (int)Math.Round((float)(LocalGridY - MinYSteps) / (MaskExpansions - 1) * (m + 1) + MinYSteps), (int)Math.Round((float)(LocalGridZ - MinZSteps) / (MaskExpansions - 1) * (m + 1) + MinZSteps)); WiggleWeights = new CubicGrid(ExpansionGridSize).GetWiggleWeights(ShiftGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0f)); // Resize the grids to account for finer sampling. GridLocalX = GridLocalX.Resize(ExpansionGridSize); GridLocalY = GridLocalY.Resize(ExpansionGridSize); // Construct start parameters for next optimization iteration. StartParams = new double[ExpansionGridSize.Elements() * 2]; for (int i = 0; i < ExpansionGridSize.Elements(); i++) { StartParams[i * 2] = GridLocalX.FlatValues[i]; StartParams[i * 2 + 1] = GridLocalY.FlatValues[i]; } } } }*/ #endregion ShiftFactors.Dispose(); Phases.Dispose(); PhasesAverage.Dispose(); Shifts.Dispose(); // Center the local shifts /*{ float2[] AverageShifts = new float2[LocalGridZ]; for (int i = 0; i < AverageShifts.Length; i++) AverageShifts[i] = new float2(MathHelper.Mean(GridLocalX.GetSliceXY(i)), MathHelper.Mean(GridLocalY.GetSliceXY(i))); float2 CenterShift = MathHelper.Mean(AverageShifts); GridLocalX = new CubicGrid(GridLocalX.Dimensions, GridLocalX.FlatValues.Select(v => v - CenterShift.X).ToArray()); GridLocalY = new CubicGrid(GridLocalY.Dimensions, GridLocalY.FlatValues.Select(v => v - CenterShift.Y).ToArray()); }*/ SaveMeta(); }