public void SliceMesh(SimpleCfdMesh mesh, int vertexAmountThreshold = 65000) { Dictionary <int, Submesh> newSubmeshes = new Dictionary <int, Submesh>(); int subKey = 0; foreach (var kv in mesh.Submeshes) { if (kv.Value.Vertices.Count <= vertexAmountThreshold) { newSubmeshes.Add(subKey++, kv.Value); continue; } var submesh = kv.Value; var slice = (int)Math.Ceiling(submesh.Vertices.Count / (float)vertexAmountThreshold); var bestVertexCountThreshold = (int)(submesh.Vertices.Count / (float)slice); int sliceKey = 0; Dictionary <int, int> old2New = new Dictionary <int, int>(); List <int> indices = new List <int>(); for (int i = 0, ilen = submesh.Indices.Count; i < ilen; i++) { var idx = submesh.Indices[i]; if (!old2New.ContainsKey(idx)) { old2New[idx] = old2New.Count; } indices.Add(old2New[idx]); if (indices.Count % 3 == 0)//trick for triangles { if (old2New.Count >= bestVertexCountThreshold) { if (sliceKey < slice - 1 || old2New.Count >= vertexAmountThreshold) { var newSubmesh = CreateSubmeshSlice(submesh, old2New.Keys.ToList(), indices); newSubmesh.Name = submesh.Name + "_" + sliceKey; newSubmesh.TimeStep = submesh.TimeStep; newSubmeshes[subKey++] = newSubmesh; old2New.Clear(); indices.Clear(); sliceKey++; } } } } if (old2New.Count > 0) { var newSubmesh = CreateSubmeshSlice(submesh, old2New.Keys.ToList(), indices); newSubmesh.Name = submesh.Name + "_" + sliceKey; newSubmesh.TimeStep = submesh.TimeStep; newSubmeshes[subKey++] = newSubmesh; old2New.Clear(); indices.Clear(); } } mesh.Submeshes = newSubmeshes; }
public SimpleCfdMesh VtkToCfdMesh(VtkModel model) { var mesh = new SimpleCfdMesh(); mesh.Name = model.Description; Vector3 min = new Vector3(float.MaxValue, float.MaxValue, float.MaxValue); Vector3 max = new Vector3(float.MinValue, float.MinValue, float.MinValue); var vCount = model.DataSet.Points.Count; var subMesh = new Submesh(); subMesh.Name = mesh.Name; mesh.Submeshes[0] = subMesh; subMesh.Vertices.AddRange(model.DataSet.Points); for (int i = 0; i < vCount; i++) { var v = model.DataSet.Points[i]; min = Vector3.Min(min, v); max = Vector3.Max(max, v); } mesh.Max = max; mesh.Min = min; subMesh.Max = max; subMesh.Min = min; #region Point Data if (model.PointDatas != null && model.PointDatas.Count > 0) { foreach (var kv in model.PointDatas) { var key = kv.Key; var val = kv.Value; if (val is Scalars) { var cs = val as Scalars; List <float[]> realScalar = new List <float[]>(cs.Values.Count); for (int i = 0, len = cs.Values.Count; i < len; i++) { realScalar.Add(cs.Values[i]); } if (!subMesh.ScalarAttribs.ContainsKey(key)) { subMesh.ScalarAttribs[key] = new List <List <float[]> >(); } subMesh.ScalarAttribs[key].Add(realScalar); } else if (val is VectorsOrNormals) { var vn = val as VectorsOrNormals; List <float[]> realVector = new List <float[]>(vn.Values.Count); for (int i = 0, len = vn.Values.Count; i < len; i++) { var item = vn.Values[i]; realVector.Add(new float[] { item.X, item.Y, item.Z }); } if (!subMesh.VectorAttribs.ContainsKey(key)) { subMesh.VectorAttribs[key] = new List <List <float[]> >(); } subMesh.VectorAttribs[key].Add(realVector); } else if (val is TextureCoordinates) { //TODO } else if (val is FieldData) { var fieldData = val as FieldData; if (fieldData.Arrays != null && fieldData.Arrays.Count > 0) { foreach (var pair in fieldData.Arrays) { var pk = pair.Key; var pv = pair.Value; //taken field data array as scalars if (pv.Tuples != null && pv.Tuples.Count > 0) { var scalars = new List <float[]>(); for (int i = 0, len = pv.Tuples.Count; i < len; i++) { scalars.Add(pv.Tuples[i]); } var k = key + "_" + pk; if (!subMesh.ScalarAttribs.ContainsKey(k)) { subMesh.ScalarAttribs[k] = new List <List <float[]> >(); } subMesh.ScalarAttribs[k].Add(scalars); } } } } else { throw new NotImplementedException("not implemented now for " + val.GetType()); } } } #endregion #region PolyData if (model.DataSet is VtkPolyData) { var items = (model.DataSet as VtkPolyData).Items; var cellAttrib2Point = new Dictionary <int, int>();//key-vertex idx, val-cell idx foreach (var kv in items) { switch (kv.Key) { case "Polygons": case "POLYGONS": subMesh.IndexType = 1; var polygons = kv.Value; for (int k = 0, kc = polygons.Indices.Count; k < kc; k++) { var idxs = polygons.Indices[k]; cellAttrib2Point[idxs[0]] = k; cellAttrib2Point[idxs[1]] = k; for (int i = 1, idLen = idxs.Length - 1; i < idLen; i++) { subMesh.Indices.Add(idxs[0]); subMesh.Indices.Add(idxs[i]); subMesh.Indices.Add(idxs[i + 1]); cellAttrib2Point[idxs[i + 1]] = k; } } break; case "TriangleStrips": case "TRIANGLE_STRIPS": subMesh.IndexType = 1; var triStrips = kv.Value; for (int k = 0, kc = triStrips.Indices.Count; k < kc; k++) { var idxs = triStrips.Indices[k]; if (idxs.Length < 3) { continue; } cellAttrib2Point[idxs[0]] = k; cellAttrib2Point[idxs[1]] = k; for (int i = 1, j = 0, end = idxs.Length - 1; i < end; i++, j++) { if (j % 2 == 0) { subMesh.Indices.Add(idxs[i - 1]); subMesh.Indices.Add(idxs[i]); subMesh.Indices.Add(idxs[i + 1]); } else { subMesh.Indices.Add(idxs[i - 1]); subMesh.Indices.Add(idxs[i + 1]); subMesh.Indices.Add(idxs[i]); } cellAttrib2Point[idxs[i + 1]] = k; } } break; default: throw new NotImplementedException("implement process for VERTICES, LINES, NORMALS, later..."); break; } } //deal with cell data #region Cell Data if (model.CellDatas != null && model.CellDatas.Count > 0) { var vtxCount = subMesh.Vertices.Count; foreach (var kv in model.CellDatas) { var key = kv.Key; var val = kv.Value; if (val is Scalars) { var cs = val as Scalars; List <float[]> realScalar = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { realScalar.Add(cs.Values[cellAttrib2Point[i]]); } if (!subMesh.ScalarAttribs.ContainsKey(key)) { subMesh.ScalarAttribs[key] = new List <List <float[]> >(); } subMesh.ScalarAttribs[key].Add(realScalar); } else if (val is VectorsOrNormals) { var vn = val as VectorsOrNormals; List <float[]> realVector = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { var item = vn.Values[cellAttrib2Point[i]]; realVector.Add(new float[] { item.X, item.Y, item.Z }); } if (!subMesh.VectorAttribs.ContainsKey(key)) { subMesh.VectorAttribs[key] = new List <List <float[]> >(); } subMesh.VectorAttribs[key].Add(realVector); } else if (val is FieldData) { var fieldData = val as FieldData; if (fieldData.Arrays != null && fieldData.Arrays.Count > 0) { foreach (var pair in fieldData.Arrays) { var pk = pair.Key; var pv = pair.Value; //taken field data array as scalars if (pv.Tuples != null && pv.Tuples.Count > 0) { var scalars = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { scalars.Add(pv.Tuples[cellAttrib2Point[i]]); } var k = key + "_" + pk; if (!subMesh.ScalarAttribs.ContainsKey(k)) { subMesh.ScalarAttribs[k] = new List <List <float[]> >(); } subMesh.ScalarAttribs[k].Add(scalars); } } } } else { throw new NotImplementedException("not implemented now for " + val.GetType()); } } } #endregion } #endregion #region Cells if (model.DataSet.Cells != null && model.DataSet.Cells.Count > 0) { subMesh.IndexType = 1; var cellAttrib2Point = new Dictionary <int, int>();//key-vertex idx, val-cell idx for (int i = 0, cl = model.DataSet.Cells.Count; i < cl; i++) { var cell = model.DataSet.Cells[i]; foreach (var index in cell.Indices) { cellAttrib2Point[index] = i; } if (cell.Type == VtkCellType.Hexahedron) { subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[0 + 4]); subMesh.Indices.Add(cell.Indices[1 + 4]); subMesh.Indices.Add(cell.Indices[2 + 4]); subMesh.Indices.Add(cell.Indices[2 + 4]); subMesh.Indices.Add(cell.Indices[3 + 4]); subMesh.Indices.Add(cell.Indices[0 + 4]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[3]); } else if (cell.Type == VtkCellType.Voxel) { subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[0 + 4]); subMesh.Indices.Add(cell.Indices[1 + 4]); subMesh.Indices.Add(cell.Indices[3 + 4]); subMesh.Indices.Add(cell.Indices[3 + 4]); subMesh.Indices.Add(cell.Indices[2 + 4]); subMesh.Indices.Add(cell.Indices[0 + 4]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[5]); subMesh.Indices.Add(cell.Indices[1]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[7]); subMesh.Indices.Add(cell.Indices[3]); subMesh.Indices.Add(cell.Indices[2]); subMesh.Indices.Add(cell.Indices[0]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[4]); subMesh.Indices.Add(cell.Indices[6]); subMesh.Indices.Add(cell.Indices[2]); } else { throw new NotImplementedException("implement process for " + cell.Type); } } //deal with cell data #region Cell Data if (model.CellDatas != null && model.CellDatas.Count > 0) { var vtxCount = subMesh.Vertices.Count; foreach (var kv in model.CellDatas) { var key = kv.Key; var val = kv.Value; if (val is Scalars) { var cs = val as Scalars; List <float[]> realScalar = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { realScalar.Add(cs.Values[cellAttrib2Point[i]]); } if (!subMesh.ScalarAttribs.ContainsKey(key)) { subMesh.ScalarAttribs[key] = new List <List <float[]> >(); } subMesh.ScalarAttribs[key].Add(realScalar); } else if (val is VectorsOrNormals) { var vn = val as VectorsOrNormals; List <float[]> realVector = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { var item = vn.Values[cellAttrib2Point[i]]; realVector.Add(new float[] { item.X, item.Y, item.Z }); } if (!subMesh.VectorAttribs.ContainsKey(key)) { subMesh.VectorAttribs[key] = new List <List <float[]> >(); } subMesh.VectorAttribs[key].Add(realVector); } else if (val is FieldData) { var fieldData = val as FieldData; if (fieldData.Arrays != null && fieldData.Arrays.Count > 0) { foreach (var pair in fieldData.Arrays) { var pk = pair.Key; var pv = pair.Value; //taken field data array as scalars if (pv.Tuples != null && pv.Tuples.Count > 0) { var scalars = new List <float[]>(vtxCount); for (int i = 0; i < vtxCount; i++) { scalars.Add(pv.Tuples[cellAttrib2Point[i]]); } var k = key + "_" + pk; if (!subMesh.ScalarAttribs.ContainsKey(k)) { subMesh.ScalarAttribs[k] = new List <List <float[]> >(); } subMesh.ScalarAttribs[k].Add(scalars); } } } } else { throw new NotImplementedException("not implemented now for " + val.GetType()); } } } #endregion } #endregion return(mesh); }