Example #1
0
        /// <summary>
        /// Find an error vector <c>E</c> over <c>GF(2)</c> from an input syndrome <c>S</c> over <c>GF(2^M)</c>
        /// </summary>
        ///
        /// <param name="SyndVec">The syndrome</param>
        /// <param name="Field">The finite field</param>
        /// <param name="Gp">The irreducible Goppa polynomial</param>
        /// <param name="SqRootMatrix">The matrix for computing square roots in <c>(GF(2M))<sup>T</sup></c></param>
        ///
        /// <returns>The error vector</returns>
        public static GF2Vector SyndromeDecode(GF2Vector SyndVec, GF2mField Field, PolynomialGF2mSmallM Gp, PolynomialGF2mSmallM[] SqRootMatrix)
        {
            int n = 1 << Field.Degree;
            // the error vector
            GF2Vector errors = new GF2Vector(n);

            // if the syndrome vector is zero, the error vector is also zero
            if (!SyndVec.IsZero())
            {
                // convert syndrome vector to polynomial over GF(2^m)
                PolynomialGF2mSmallM syndrome = new PolynomialGF2mSmallM(SyndVec.ToExtensionFieldVector(Field));
                // compute T = syndrome^-1 mod gp
                PolynomialGF2mSmallM t = syndrome.ModInverse(Gp);
                // compute tau = sqRoot(T + X) mod gp
                PolynomialGF2mSmallM tau = t.AddMonomial(1);
                tau = tau.ModSquareRootMatrix(SqRootMatrix);
                // compute polynomials a and b satisfying a + b*tau = 0 mod gp
                PolynomialGF2mSmallM[] ab = tau.ModPolynomialToFracton(Gp);
                // compute the polynomial a^2 + X*b^2
                PolynomialGF2mSmallM a2        = ab[0].Multiply(ab[0]);
                PolynomialGF2mSmallM b2        = ab[1].Multiply(ab[1]);
                PolynomialGF2mSmallM xb2       = b2.MultWithMonomial(1);
                PolynomialGF2mSmallM a2plusXb2 = a2.Add(xb2);
                // normalize a^2 + X*b^2 to obtain the error locator polynomial
                int headCoeff            = a2plusXb2.Head;
                int invHeadCoeff         = Field.Inverse(headCoeff);
                PolynomialGF2mSmallM elp = a2plusXb2.MultWithElement(invHeadCoeff);

                // for all elements i of GF(2^m)
                for (int i = 0; i < n; i++)
                {
                    // evaluate the error locator polynomial at i
                    int z = elp.EvaluateAt(i);
                    // if polynomial evaluates to zero
                    if (z == 0)
                    {
                        // set the i-th coefficient of the error vector
                        errors.SetBit(i);
                    }
                }
            }

            return(errors);
        }
Example #2
0
        /// <summary>
        /// Construct the check matrix of a Goppa code in canonical form from the irreducible Goppa polynomial over the finite field <c>GF(2^m)</c>.
        /// </summary>
        ///
        /// <param name="Field">The finite field</param>
        /// <param name="Gp">The irreducible Goppa polynomial</param>
        ///
        /// <returns>The new GF2Matrix</returns>
        public static GF2Matrix CreateCanonicalCheckMatrix(GF2mField Field, PolynomialGF2mSmallM Gp)
        {
            int m = Field.Degree;
            int n = 1 << m;
            int t = Gp.Degree;

            // create matrix H over GF(2^m)
            int[][] hArray = ArrayUtils.CreateJagged <int[][]>(t, n);
            // create matrix YZ
            int[][] yz = ArrayUtils.CreateJagged <int[][]>(t, n);

            if (ParallelUtils.IsParallel)
            {
                Parallel.For(0, n, j =>
                             yz[0][j] = Field.Inverse(Gp.EvaluateAt(j)));
            }
            else
            {
                // here j is used as index and as element of field GF(2^m)
                for (int j = 0; j < n; j++)
                {
                    yz[0][j] = Field.Inverse(Gp.EvaluateAt(j));
                }
            }

            for (int i = 1; i < t; i++)
            {
                // here j is used as index and as element of field GF(2^m)
                if (ParallelUtils.IsParallel)
                {
                    Parallel.For(0, n, j =>
                    {
                        yz[i][j] = Field.Multiply(yz[i - 1][j], j);
                    });
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        yz[i][j] = Field.Multiply(yz[i - 1][j], j);
                    }
                }
            }

            // create matrix H = XYZ
            for (int i = 0; i < t; i++)
            {
                if (ParallelUtils.IsParallel)
                {
                    Parallel.For(0, n, j =>
                    {
                        for (int k = 0; k <= i; k++)
                        {
                            hArray[i][j] = Field.Add(hArray[i][j], Field.Multiply(yz[k][j], Gp.GetCoefficient(t + k - i)));
                        }
                    });
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int k = 0; k <= i; k++)
                        {
                            hArray[i][j] = Field.Add(hArray[i][j], Field.Multiply(yz[k][j], Gp.GetCoefficient(t + k - i)));
                        }
                    }
                }
            }

            // convert to matrix over GF(2)
            int[][] result = ArrayUtils.CreateJagged <int[][]>(t * m, IntUtils.URShift((n + 31), 5));

            if (ParallelUtils.IsParallel)
            {
                for (int j = 0; j < n; j++)
                {
                    int q = IntUtils.URShift(j, 5);
                    int r = 1 << (j & 0x1f);
                    for (int i = 0; i < t; i++)
                    {
                        int e = hArray[i][j];
                        Parallel.For(0, m, u =>
                        {
                            int b = (IntUtils.URShift(e, u)) & 1;
                            if (b != 0)
                            {
                                int ind         = (i + 1) * m - u - 1;
                                result[ind][q] ^= r;
                            }
                        });
                    }
                }
            }
            else
            {
                for (int j = 0; j < n; j++)
                {
                    int q = IntUtils.URShift(j, 5);
                    int r = 1 << (j & 0x1f);
                    for (int i = 0; i < t; i++)
                    {
                        int e = hArray[i][j];
                        for (int u = 0; u < m; u++)
                        {
                            int b = (IntUtils.URShift(e, u)) & 1;
                            if (b != 0)
                            {
                                int ind = (i + 1) * m - u - 1;
                                result[ind][q] ^= r;
                            }
                        }
                    }
                }
            }

            return(new GF2Matrix(n, result));
        }
Example #3
0
        /// <summary>
        /// Construct the check matrix of a Goppa code in canonical form from the irreducible Goppa polynomial over the finite field <c>GF(2^m)</c>.
        /// </summary>
        /// 
        /// <param name="Field">The finite field</param>
        /// <param name="Gp">The irreducible Goppa polynomial</param>
        /// 
        /// <returns>The new GF2Matrix</returns>
        public static GF2Matrix CreateCanonicalCheckMatrix(GF2mField Field, PolynomialGF2mSmallM Gp)
        {
            int m = Field.Degree;
            int n = 1 << m;
            int t = Gp.Degree;
            // create matrix H over GF(2^m)
            int[][] hArray = ArrayUtils.CreateJagged<int[][]>(t, n);
            // create matrix YZ
            int[][] yz = ArrayUtils.CreateJagged<int[][]>(t, n);

            if (ParallelUtils.IsParallel)
            {
                Parallel.For(0, n, j =>
                    yz[0][j] = Field.Inverse(Gp.EvaluateAt(j)));
            }
            else
            {
                // here j is used as index and as element of field GF(2^m)
                for (int j = 0; j < n; j++)
                    yz[0][j] = Field.Inverse(Gp.EvaluateAt(j));
            }

            for (int i = 1; i < t; i++)
            {
                // here j is used as index and as element of field GF(2^m)
                if (ParallelUtils.IsParallel)
                {
                    Parallel.For(0, n, j =>
                    {
                        yz[i][j] = Field.Multiply(yz[i - 1][j], j);
                    });
                }
                else
                {
                    for (int j = 0; j < n; j++)
                        yz[i][j] = Field.Multiply(yz[i - 1][j], j);
                }
            }

            // create matrix H = XYZ
            for (int i = 0; i < t; i++)
            {
                if (ParallelUtils.IsParallel)
                {
                    Parallel.For(0, n, j =>
                    {
                        for (int k = 0; k <= i; k++)
                            hArray[i][j] = Field.Add(hArray[i][j], Field.Multiply(yz[k][j], Gp.GetCoefficient(t + k - i)));
                    });
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int k = 0; k <= i; k++)
                            hArray[i][j] = Field.Add(hArray[i][j], Field.Multiply(yz[k][j], Gp.GetCoefficient(t + k - i)));
                    }
                }
            }

            // convert to matrix over GF(2)
            int[][] result = ArrayUtils.CreateJagged<int[][]>(t * m, IntUtils.URShift((n + 31), 5));

            if (ParallelUtils.IsParallel)
            {
                for (int j = 0; j < n; j++)
                {
                    int q = IntUtils.URShift(j, 5);
                    int r = 1 << (j & 0x1f);
                    for (int i = 0; i < t; i++)
                    {
                        int e = hArray[i][j];
                        Parallel.For(0, m, u =>
                        {
                            int b = (IntUtils.URShift(e, u)) & 1;
                            if (b != 0)
                            {
                                int ind = (i + 1) * m - u - 1;
                                result[ind][q] ^= r;
                            }
                        });
                    }
                }
            }
            else
            {
                for (int j = 0; j < n; j++)
                {
                    int q = IntUtils.URShift(j, 5);
                    int r = 1 << (j & 0x1f);
                    for (int i = 0; i < t; i++)
                    {
                        int e = hArray[i][j];
                        for (int u = 0; u < m; u++)
                        {
                            int b = (IntUtils.URShift(e, u)) & 1;
                            if (b != 0)
                            {
                                int ind = (i + 1) * m - u - 1;
                                result[ind][q] ^= r;
                            }
                        }
                    }
                }
            }

            return new GF2Matrix(n, result);
        }