void CreateScene() { var cache = ResourceCache; { rttScene = new Scene(); // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000) rttScene.CreateComponent<Octree>(); // Create a Zone for ambient light & fog control Node zoneNode = rttScene.CreateChild("Zone"); Zone zone = zoneNode.CreateComponent<Zone>(); // Set same volume as the Octree, set a close bluish fog and some ambient light zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f)); zone.AmbientColor = new Color(0.05f, 0.1f, 0.15f); zone.FogColor = new Color(0.1f, 0.2f, 0.3f); zone.FogStart = 10.0f; zone.FogEnd = 100.0f; // Create randomly positioned and oriented box StaticModels in the scene const uint numObjects = 2000; for (uint i = 0; i < numObjects; ++i) { Node boxNode = rttScene.CreateChild("Box"); boxNode.Position = new Vector3(NextRandom(200.0f) - 100.0f, NextRandom(200.0f) - 100.0f, NextRandom(200.0f) - 100.0f); // Orient using random pitch, yaw and roll Euler angles boxNode.Rotation = new Quaternion(NextRandom(360.0f), NextRandom(360.0f), NextRandom(360.0f)); StaticModel boxObject = boxNode.CreateComponent<StaticModel>(); boxObject.Model = cache.GetModel("Models/Box.mdl"); boxObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event. // Simply set same rotation speed for all objects Rotator rotator = new Rotator(); boxNode.AddComponent(rotator); rotator.SetRotationSpeed(new Vector3(10.0f, 20.0f, 30.0f)); } // Create a camera for the render-to-texture scene. Simply leave it at the world origin and let it observe the scene rttCameraNode = rttScene.CreateChild("Camera"); Camera camera = rttCameraNode.CreateComponent<Camera>(); camera.FarClip = 100.0f; // Create a point light to the camera scene node Light light = rttCameraNode.CreateComponent<Light>(); light.LightType = LightType.Point; light.Range = 30.0f; } { // Create the scene in which we move around scene = new Scene(); // Create octree, use also default volume (-1000, -1000, -1000) to (1000, 1000, 1000) scene.CreateComponent<Octree>(); // Create a Zone component for ambient lighting & fog control Node zoneNode = scene.CreateChild("Zone"); Zone zone = zoneNode.CreateComponent<Zone>(); zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f)); zone.AmbientColor = new Color(0.1f, 0.1f, 0.1f); zone.FogStart = 100.0f; zone.FogEnd = 300.0f; // Create a directional light without shadows Node lightNode = scene.CreateChild("DirectionalLight"); lightNode.SetDirection(new Vector3(0.5f, -1.0f, 0.5f)); Light light = lightNode.CreateComponent<Light>(); light.LightType = LightType.Directional; light.Color = new Color(0.2f, 0.2f, 0.2f); light.SpecularIntensity = 1.0f; // Create a "floor" consisting of several tiles for (int y = -5; y <= 5; ++y) { for (int x = -5; x <= 5; ++x) { Node floorNode = scene.CreateChild("FloorTile"); floorNode.Position = new Vector3(x*20.5f, -0.5f, y*20.5f); floorNode.Scale = new Vector3(20.0f, 1.0f, 20.0f); StaticModel floorObject = floorNode.CreateComponent<StaticModel>(); floorObject.Model = cache.GetModel("Models/Box.mdl"); floorObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); } } // Create a "screen" like object for viewing the second scene. Construct it from two StaticModels, a box for the frame // and a plane for the actual view { Node boxNode = scene.CreateChild("ScreenBox"); boxNode.Position = new Vector3(0.0f, 10.0f, 0.0f); boxNode.Scale = new Vector3(21.0f, 16.0f, 0.5f); StaticModel boxObject = boxNode.CreateComponent<StaticModel>(); boxObject.Model = cache.GetModel("Models/Box.mdl"); boxObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); Node screenNode = scene.CreateChild("Screen"); screenNode.Position = new Vector3(0.0f, 10.0f, -0.27f); screenNode.Rotation = new Quaternion(-90.0f, 0.0f, 0.0f); screenNode.Scale = new Vector3(20.0f, 0.0f, 15.0f); StaticModel screenObject = screenNode.CreateComponent<StaticModel>(); screenObject.Model = cache.GetModel("Models/Plane.mdl"); // Create a renderable texture (1024x768, RGB format), enable bilinear filtering on it Texture2D renderTexture = new Texture2D(); renderTexture.SetSize(1024, 768, Graphics.RGBFormat, TextureUsage.Rendertarget); renderTexture.FilterMode = TextureFilterMode.Bilinear; // Create a new material from scratch, use the diffuse unlit technique, assign the render texture // as its diffuse texture, then assign the material to the screen plane object Material renderMaterial = new Material(); renderMaterial.SetTechnique(0, cache.GetTechnique("Techniques/DiffUnlit.xml"), 0, 0); renderMaterial.SetTexture(TextureUnit.Diffuse, renderTexture); screenObject.SetMaterial(renderMaterial); // Get the texture's RenderSurface object (exists when the texture has been created in rendertarget mode) // and define the viewport for rendering the second scene, similarly as how backbuffer viewports are defined // to the Renderer subsystem. By default the texture viewport will be updated when the texture is visible // in the main view RenderSurface surface = renderTexture.RenderSurface; Viewport rttViewport = new Viewport(Context, rttScene, rttCameraNode.GetComponent<Camera>(), null); surface.SetViewport(0, rttViewport); } // Create the camera. Limit far clip distance to match the fog CameraNode = scene.CreateChild("Camera"); var camera = CameraNode.CreateComponent<Camera>(); camera.FarClip = 300.0f; // Set an initial position for the camera scene node above the plane CameraNode.Position = new Vector3(0.0f, 7.0f, -30.0f); } }
void CreateScene() { var cache = ResourceCache; { rttScene = new Scene(); // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000) rttScene.CreateComponent <Octree>(); // Create a Zone for ambient light & fog control Node zoneNode = rttScene.CreateChild("Zone"); Zone zone = zoneNode.CreateComponent <Zone>(); // Set same volume as the Octree, set a close bluish fog and some ambient light zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f)); zone.AmbientColor = new Color(0.05f, 0.1f, 0.15f); zone.FogColor = new Color(0.1f, 0.2f, 0.3f); zone.FogStart = 10.0f; zone.FogEnd = 100.0f; // Create randomly positioned and oriented box StaticModels in the scene const uint numObjects = 2000; for (uint i = 0; i < numObjects; ++i) { Node boxNode = rttScene.CreateChild("Box"); boxNode.Position = new Vector3(NextRandom(200.0f) - 100.0f, NextRandom(200.0f) - 100.0f, NextRandom(200.0f) - 100.0f); // Orient using random pitch, yaw and roll Euler angles boxNode.Rotation = new Quaternion(NextRandom(360.0f), NextRandom(360.0f), NextRandom(360.0f)); StaticModel boxObject = boxNode.CreateComponent <StaticModel>(); boxObject.Model = cache.GetModel("Models/Box.mdl"); boxObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event. // Simply set same rotation speed for all objects Rotator rotator = new Rotator(); boxNode.AddComponent(rotator); rotator.SetRotationSpeed(new Vector3(10.0f, 20.0f, 30.0f)); } // Create a camera for the render-to-texture scene. Simply leave it at the world origin and let it observe the scene rttCameraNode = rttScene.CreateChild("Camera"); Camera camera = rttCameraNode.CreateComponent <Camera>(); camera.FarClip = 100.0f; // Create a point light to the camera scene node Light light = rttCameraNode.CreateComponent <Light>(); light.LightType = LightType.Point; light.Range = 30.0f; } { // Create the scene in which we move around scene = new Scene(); // Create octree, use also default volume (-1000, -1000, -1000) to (1000, 1000, 1000) scene.CreateComponent <Octree>(); // Create a Zone component for ambient lighting & fog control Node zoneNode = scene.CreateChild("Zone"); Zone zone = zoneNode.CreateComponent <Zone>(); zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f)); zone.AmbientColor = new Color(0.1f, 0.1f, 0.1f); zone.FogStart = 100.0f; zone.FogEnd = 300.0f; // Create a directional light without shadows Node lightNode = scene.CreateChild("DirectionalLight"); lightNode.SetDirection(new Vector3(0.5f, -1.0f, 0.5f)); Light light = lightNode.CreateComponent <Light>(); light.LightType = LightType.Directional; light.Color = new Color(0.2f, 0.2f, 0.2f); light.SpecularIntensity = 1.0f; // Create a "floor" consisting of several tiles for (int y = -5; y <= 5; ++y) { for (int x = -5; x <= 5; ++x) { Node floorNode = scene.CreateChild("FloorTile"); floorNode.Position = new Vector3(x * 20.5f, -0.5f, y * 20.5f); floorNode.Scale = new Vector3(20.0f, 1.0f, 20.0f); StaticModel floorObject = floorNode.CreateComponent <StaticModel>(); floorObject.Model = cache.GetModel("Models/Box.mdl"); floorObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); } } // Create a "screen" like object for viewing the second scene. Construct it from two StaticModels, a box for the frame // and a plane for the actual view { Node boxNode = scene.CreateChild("ScreenBox"); boxNode.Position = new Vector3(0.0f, 10.0f, 0.0f); boxNode.Scale = new Vector3(21.0f, 16.0f, 0.5f); StaticModel boxObject = boxNode.CreateComponent <StaticModel>(); boxObject.Model = cache.GetModel("Models/Box.mdl"); boxObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); Node screenNode = scene.CreateChild("Screen"); screenNode.Position = new Vector3(0.0f, 10.0f, -0.27f); screenNode.Rotation = new Quaternion(-90.0f, 0.0f, 0.0f); screenNode.Scale = new Vector3(20.0f, 0.0f, 15.0f); StaticModel screenObject = screenNode.CreateComponent <StaticModel>(); screenObject.Model = cache.GetModel("Models/Plane.mdl"); // Create a renderable texture (1024x768, RGB format), enable bilinear filtering on it Texture2D renderTexture = new Texture2D(); renderTexture.SetSize(1024, 768, Graphics.RGBFormat, TextureUsage.Rendertarget); renderTexture.FilterMode = TextureFilterMode.Bilinear; // Create a new material from scratch, use the diffuse unlit technique, assign the render texture // as its diffuse texture, then assign the material to the screen plane object Material renderMaterial = new Material(); renderMaterial.SetTechnique(0, cache.GetTechnique("Techniques/DiffUnlit.xml"), 0, 0); renderMaterial.SetTexture(TextureUnit.Diffuse, renderTexture); screenObject.SetMaterial(renderMaterial); // Get the texture's RenderSurface object (exists when the texture has been created in rendertarget mode) // and define the viewport for rendering the second scene, similarly as how backbuffer viewports are defined // to the Renderer subsystem. By default the texture viewport will be updated when the texture is visible // in the main view RenderSurface surface = renderTexture.RenderSurface; Viewport rttViewport = new Viewport(Context, rttScene, rttCameraNode.GetComponent <Camera>(), null); surface.SetViewport(0, rttViewport); } // Create the camera. Limit far clip distance to match the fog CameraNode = scene.CreateChild("Camera"); var camera = CameraNode.CreateComponent <Camera>(); camera.FarClip = 300.0f; // Set an initial position for the camera scene node above the plane CameraNode.Position = new Vector3(0.0f, 7.0f, -30.0f); } }
void CreateScene() { var cache = ResourceCache; scene = new Scene(); // Create the Octree component to the scene so that drawable objects can be rendered. Use default volume // (-1000, -1000, -1000) to (1000, 1000, 1000) scene.CreateComponent<Octree>(); // Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree, // it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y // and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist var zoneNode = scene.CreateChild("Zone"); var zone = zoneNode.CreateComponent<Zone>(); // Set same volume as the Octree, set a close bluish fog and some ambient light zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f)); zone.AmbientColor = new Color(0.05f, 0.1f, 0.15f); zone.FogColor = new Color(0.1f, 0.2f, 0.3f); zone.FogStart = 10; zone.FogEnd = 100; var boxesNode = scene.CreateChild("Boxes"); const int numObjects = 2000; for (var i = 0; i < numObjects; ++i) { Node boxNode = new Node(); boxesNode.AddChild(boxNode, 0); boxNode.Position = new Vector3(NextRandom(200f) - 100f, NextRandom(200f) - 100f, NextRandom(200f) - 100f); // Orient using random pitch, yaw and roll Euler angles boxNode.Rotation = new Quaternion(NextRandom(360.0f), NextRandom(360.0f), NextRandom(360.0f)); using (var boxObject = boxNode.CreateComponent<StaticModel>()) { boxObject.Model = cache.GetModel("Models/Box.mdl"); boxObject.SetMaterial(cache.GetMaterial("Materials/Stone.xml")); //we don't need this component in C# anymore so let's just delete a MCW for it (howerver, we can access it anytime if we need via GetComponent<>) //it's just an optimization to reduce cached objects count } // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event. // The Rotator component derives from the base class LogicComponent, which has convenience functionality to subscribe // to the various update events, and forward them to virtual functions that can be implemented by subclasses. This way // writing logic/update components in C++ becomes similar to scripting. // Now we simply set same rotation speed for all objects var rotationSpeed = new Vector3(10.0f, 20.0f, 30.0f); // First style: use a Rotator instance, which is a component subclass, and // add it to the boxNode. var rotator = new Rotator() { RotationSpeed = rotationSpeed }; boxNode.AddComponent(rotator); } // Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can // bring the far clip plane closer for more effective culling of distant objects CameraNode = scene.CreateChild("Camera"); var camera = CameraNode.CreateComponent<Camera>(); camera.FarClip = 100.0f; // Create a point light to the camera scene node var light = CameraNode.CreateComponent<Light>(); light.LightType = LightType.Point; light.Range = 30.0f; }