Example #1
0
        static public void Initialize(out LTCData ltcData)
        {
            ltcData.magnitude = 1;
            ltcData.fresnel   = 1;

            ltcData.X.x = 1;
            ltcData.X.y = 0;
            ltcData.X.z = 0;

            ltcData.Y.x = 0;
            ltcData.Y.y = 1;
            ltcData.Y.z = 0;

            ltcData.Z.x = 0;
            ltcData.Z.y = 0;
            ltcData.Z.z = 1;

            ltcData.m11 = 1;
            ltcData.m22 = 1;
            ltcData.m13 = 0;

            ltcData.error           = 0;
            ltcData.iterationsCount = 0;
            ltcData.detM            = 0;

            MatrixUtilities.Initialize(out ltcData.M);
            MatrixUtilities.Initialize(out ltcData.invM);
        }
            public void Fit(int roughnessIndex, int thetaIndex, NelderMead fitter, IBRDF brdf)
            {
                // Compute the roughness and cosTheta for this sample
                float roughness, cosTheta;

                GetRoughnessAndAngle(roughnessIndex, thetaIndex, tableResolution, parametrization, out roughness, out cosTheta);

                // Compute the matching view vector
                Vector3 tsView = new Vector3(Mathf.Sqrt(1 - cosTheta * cosTheta), 0, cosTheta);

                // Compute BRDF's magnitude and average direction
                LTCData currentLTCData;

                LTCDataUtilities.Initialize(out currentLTCData);
                LTCDataUtilities.ComputeAverageTerms(brdf, ref tsView, roughness, sampleCount, ref currentLTCData);

                // Otherwise use average direction as Z vector
                int     previousLTCDataIndex = (thetaIndex - 1) * tableResolution + roughnessIndex;
                LTCData previousLTC          = ltcData[previousLTCDataIndex];

                currentLTCData.m11 = previousLTC.m11;
                currentLTCData.m22 = previousLTC.m22;
                currentLTCData.m13 = previousLTC.m13;

                LTCDataUtilities.Update(ref currentLTCData);

                // Find best-fit LTC lobe (scale, alphax, alphay)
                if (currentLTCData.magnitude > 1e-6)
                {
                    double[] startFit  = LTCDataUtilities.GetFittingParms(in currentLTCData);
                    double[] resultFit = new double[startFit.Length];

                    int localSampleCount = sampleCount;
                    currentLTCData.error = (float)fitter.FindFit(resultFit, startFit, (double)k_FitExploreDelta, (double)k_Tolerance, k_MaxIterations, (double[] parameters) =>
                    {
                        LTCDataUtilities.SetFittingParms(ref currentLTCData, parameters, false);
                        return(ComputeError(currentLTCData, brdf, localSampleCount, ref tsView, roughness));
                    });
                    currentLTCData.iterationsCount = fitter.m_lastIterationsCount;

                    // Update LTC with final best fitting values
                    LTCDataUtilities.SetFittingParms(ref currentLTCData, resultFit, false);
                }

                // Store new valid result
                int currentLTCDataIndex = thetaIndex * tableResolution + roughnessIndex;

                ltcData[currentLTCDataIndex] = currentLTCData;
            }
        // Compute the error between the BRDF and the LTC using Multiple Importance Sampling
        static float ComputeError(LTCData ltcData, IBRDF brdf, int sampleCount, ref Vector3 _tsView, float _alpha)
        {
            Vector3 tsLight = Vector3.zero;

            double pdf_BRDF, eval_BRDF;
            double pdf_LTC, eval_LTC;

            float sumError = 0.0f;

            for (int j = 0; j < sampleCount; ++j)
            {
                for (int i = 0; i < sampleCount; ++i)
                {
                    float U1 = (i + 0.5f) / sampleCount;
                    float U2 = (j + 0.5f) / sampleCount;

                    // importance sample LTC
                    {
                        // sample
                        LTCDataUtilities.GetSamplingDirection(ltcData, U1, U2, ref tsLight);

                        eval_BRDF = brdf.Eval(ref _tsView, ref tsLight, _alpha, out pdf_BRDF);
                        eval_LTC  = (float)LTCDataUtilities.Eval(ltcData, ref tsLight);
                        pdf_LTC   = eval_LTC / ltcData.magnitude;

                        // error with MIS weight
                        float error = Mathf.Abs((float)(eval_BRDF - eval_LTC));
                        error = error * error * error;        // Use L3 norm to favor large values over smaller ones
                        if (error != 0.0f)
                        {
                            error /= (float)pdf_LTC + (float)pdf_BRDF;
                        }

                        if (double.IsNaN(error))
                        {
                            // SHOULD NEVER HAPPEN
                        }
                        sumError += error;
                    }

                    // importance sample BRDF
                    {
                        // sample
                        brdf.GetSamplingDirection(ref _tsView, _alpha, U1, U2, ref tsLight);

                        // error with MIS weight
                        eval_BRDF = brdf.Eval(ref _tsView, ref tsLight, _alpha, out pdf_BRDF);
                        eval_LTC  = LTCDataUtilities.Eval(ltcData, ref tsLight);
                        pdf_LTC   = eval_LTC / ltcData.magnitude;
                        float error = Mathf.Abs((float)(eval_BRDF - eval_LTC));
                        error = error * error * error;        // Use L3 norm to favor large values over smaller ones

                        if (error != 0.0f)
                        {
                            error /= (float)pdf_LTC + (float)pdf_BRDF;
                        }

                        if (double.IsNaN(error))
                        {
                            // SHOULD NEVER HAPPEN
                        }
                        sumError += error;
                    }
                }
            }

            return(sumError / ((float)sampleCount * sampleCount));
        }
        static public void FitInitial(BRDFGenerator brdfGenerator, NelderMead fitter, NativeArray <LTCData> ltcData, int roughnessIndex, int thetaIndex)
        {
            // Compute the roughness and cosTheta for this sample
            float roughness, cosTheta;

            GetRoughnessAndAngle(roughnessIndex, thetaIndex, brdfGenerator.tableResolution, brdfGenerator.parametrization, out roughness, out cosTheta);

            // Compute the matching view vector
            Vector3 tsView = new Vector3(Mathf.Sqrt(1 - cosTheta * cosTheta), 0, cosTheta);

            // Compute BRDF's magnitude and average direction
            LTCData currentLTCData;

            LTCDataUtilities.Initialize(out currentLTCData);
            LTCDataUtilities.ComputeAverageTerms(brdfGenerator.brdf, ref tsView, roughness, brdfGenerator.sampleCount, ref currentLTCData);

            // if theta == 0 the lobe is rotationally symmetric and aligned with Z = (0 0 1)
            currentLTCData.X.x = 1;
            currentLTCData.X.y = 0;
            currentLTCData.X.z = 0;

            currentLTCData.Y.x = 0;
            currentLTCData.Y.y = 1;
            currentLTCData.Y.z = 0;

            currentLTCData.Z.x = 0;
            currentLTCData.Z.y = 0;
            currentLTCData.Z.z = 1;

            if (roughnessIndex == (brdfGenerator.tableResolution - 1))
            {
                // roughness = 1 or no available result
                currentLTCData.m11 = 1.0f;
                currentLTCData.m22 = 1.0f;
            }
            else
            {
                // init with roughness of previous fit
                LTCData previousLTC = ltcData[roughnessIndex + 1];
                currentLTCData.m11 = previousLTC.m11;
                currentLTCData.m22 = previousLTC.m22;
            }
            currentLTCData.m13 = 0;

            LTCDataUtilities.Update(ref currentLTCData);

            // Find best-fit LTC lobe (scale, alphax, alphay)
            if (currentLTCData.magnitude > 1e-6)
            {
                double[] startFit  = LTCDataUtilities.GetFittingParms(in currentLTCData);
                double[] resultFit = new double[startFit.Length];

                currentLTCData.error = (float)fitter.FindFit(resultFit, startFit, k_FitExploreDelta, k_Tolerance, k_MaxIterations, (double[] parameters) =>
                {
                    LTCDataUtilities.SetFittingParms(ref currentLTCData, parameters, true);
                    return(ComputeError(currentLTCData, brdfGenerator.brdf, brdfGenerator.sampleCount, ref tsView, roughness));
                });
                currentLTCData.iterationsCount = fitter.m_lastIterationsCount;

                // Update LTC with final best fitting values
                LTCDataUtilities.SetFittingParms(ref currentLTCData, resultFit, true);
            }

            // Store new valid result
            ltcData[roughnessIndex] = currentLTCData;
        }