Example #1
0
		private float freq; //prhase frequency in current doc as computed by phraseFreq().
		
		internal PhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, byte[] norms):base(similarity)
		{
			this.norms = norms;
			this.weight = weight;
			this.value_Renamed = weight.Value;
			
			// convert tps to a list of phrase positions.
			// note: phrase-position differs from term-position in that its position
			// reflects the phrase offset: pp.pos = tp.pos - offset.
			// this allows to easily identify a matching (exact) phrase 
			// when all PhrasePositions have exactly the same position.
			for (int i = 0; i < tps.Length; i++)
			{
				PhrasePositions pp = new PhrasePositions(tps[i], offsets[i]);
				if (last != null)
				{
					// add next to end of list
					last.next = pp;
				}
				else
				{
					first = pp;
				}
				last = pp;
			}
			
			pq = new PhraseQueue(tps.Length); // construct empty pq
			first.doc = - 1;
		}
Example #2
0
			public TermWeight(TermQuery enclosingInstance, Searcher searcher)
			{
				InitBlock(enclosingInstance);
				this.similarity = Enclosing_Instance.GetSimilarity(searcher);
				idfExp = similarity.IdfExplain(Enclosing_Instance.term, searcher);
				idf = idfExp.Idf;
			}
			internal MatchAllScorer(MatchAllDocsQuery enclosingInstance, IndexReader reader, Similarity similarity, Weight w, byte[] norms):base(similarity)
			{
				InitBlock(enclosingInstance);
				this.termDocs = reader.TermDocs(null);
				score = w.Value;
				this.norms = norms;
			}
Example #4
0
		/// <summary> Construct a <c>TermScorer</c>.
		/// 
		/// </summary>
		/// <param name="weight">The weight of the <c>Term</c> in the query.
		/// </param>
		/// <param name="td">An iterator over the documents matching the <c>Term</c>.
		/// </param>
		/// <param name="similarity">The <c>Similarity</c> implementation to be used for score
		/// computations.
		/// </param>
		/// <param name="norms">The field norms of the document fields for the <c>Term</c>.
		/// </param>
		public /*internal*/ TermScorer(Weight weight, TermDocs td, Similarity similarity, byte[] norms):base(similarity)
		{
			this.weight = weight;
			this.termDocs = td;
			this.norms = norms;
			this.weightValue = weight.Value;
			
			for (int i = 0; i < SCORE_CACHE_SIZE; i++)
				scoreCache[i] = Similarity.Tf(i) * weightValue;
		}
		public ConjunctionScorer(Similarity similarity, params Scorer[] scorers):base(similarity)
		{
			this.scorers = scorers;
			coord = similarity.Coord(scorers.Length, scorers.Length);
			
			for (int i = 0; i < scorers.Length; i++)
			{
				if (scorers[i].NextDoc() == NO_MORE_DOCS)
				{
					// If even one of the sub-scorers does not have any documents, this
					// scorer should not attempt to do any more work.
					lastDoc = NO_MORE_DOCS;
					return ;
				}
			}
			
			// Sort the array the first time...
			// We don't need to sort the array in any future calls because we know
			// it will already start off sorted (all scorers on same doc).
			
			// note that this comparator is not consistent with equals!
		    System.Array.Sort(scorers, (a, b) => a.DocID() - b.DocID());
			
			// NOTE: doNext() must be called before the re-sorting of the array later on.
			// The reason is this: assume there are 5 scorers, whose first docs are 1,
			// 2, 3, 5, 5 respectively. Sorting (above) leaves the array as is. Calling
			// doNext() here advances all the first scorers to 5 (or a larger doc ID
			// they all agree on). 
			// However, if we re-sort before doNext() is called, the order will be 5, 3,
			// 2, 1, 5 and then doNext() will stop immediately, since the first scorer's
			// docs equals the last one. So the invariant that after calling doNext() 
			// all scorers are on the same doc ID is broken.);
			if (DoNext() == NO_MORE_DOCS)
			{
				// The scorers did not agree on any document.
				lastDoc = NO_MORE_DOCS;
				return ;
			}
			
			// If first-time skip distance is any predictor of
			// scorer sparseness, then we should always try to skip first on
			// those scorers.
			// Keep last scorer in it's last place (it will be the first
			// to be skipped on), but reverse all of the others so that
			// they will be skipped on in order of original high skip.
			int end = scorers.Length - 1;
			int max = end >> 1;
			for (int i = 0; i < max; i++)
			{
				Scorer tmp = scorers[i];
				int idx = end - i - 1;
				scorers[i] = scorers[idx];
				scorers[idx] = tmp;
			}
		}
Example #6
0
		internal DocumentsWriter(Directory directory, IndexWriter writer, IndexingChain indexingChain)
		{
			InitBlock();
			this.directory = directory;
			this.writer = writer;
			this.similarity = writer.Similarity;
			flushedDocCount = writer.MaxDoc();
			
			consumer = indexingChain.GetChain(this);
			if (consumer is DocFieldProcessor)
			{
				docFieldProcessor = (DocFieldProcessor) consumer;
			}
		}
			public ConstantWeight(ConstantScoreQuery enclosingInstance, Searcher searcher)
			{
				InitBlock(enclosingInstance);
				this.similarity = Enclosing_Instance.GetSimilarity(searcher);
			}
			public ConstantScorer(ConstantScoreQuery enclosingInstance, Similarity similarity, IndexReader reader, Weight w):base(similarity)
			{
				InitBlock(enclosingInstance);
				theScore = w.Value;
				DocIdSet docIdSet = Enclosing_Instance.internalFilter.GetDocIdSet(reader);
				if (docIdSet == null)
				{
					docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator();
				}
				else
				{
					DocIdSetIterator iter = docIdSet.Iterator();
					if (iter == null)
					{
						docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator();
					}
					else
					{
						docIdSetIterator = iter;
					}
				}
			}
		internal ExactPhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, byte[] norms):base(weight, tps, offsets, similarity, norms)
		{
		}
Example #10
0
            public override Explanation Explain(IndexReader reader, int doc)
            {
                Explanation result = new Explanation();

                result.Description = "weight(" + Query + " in " + doc + "), product of:";

                System.Text.StringBuilder docFreqs = new System.Text.StringBuilder();
                System.Text.StringBuilder query    = new System.Text.StringBuilder();
                query.Append('\"');
                docFreqs.Append(idfExp.Explain());
                for (int i = 0; i < Enclosing_Instance.terms.Count; i++)
                {
                    if (i != 0)
                    {
                        query.Append(" ");
                    }

                    Term term = Enclosing_Instance.terms[i];

                    query.Append(term.Text);
                }
                query.Append('\"');

                Explanation idfExpl = new Explanation(idf, "idf(" + Enclosing_Instance.field + ":" + docFreqs + ")");

                // explain query weight
                Explanation queryExpl = new Explanation();

                queryExpl.Description = "queryWeight(" + Query + "), product of:";

                Explanation boostExpl = new Explanation(Enclosing_Instance.Boost, "boost");

                if (Enclosing_Instance.Boost != 1.0f)
                {
                    queryExpl.AddDetail(boostExpl);
                }
                queryExpl.AddDetail(idfExpl);

                Explanation queryNormExpl = new Explanation(queryNorm, "queryNorm");

                queryExpl.AddDetail(queryNormExpl);

                queryExpl.Value = boostExpl.Value * idfExpl.Value * queryNormExpl.Value;

                result.AddDetail(queryExpl);

                // explain field weight
                Explanation fieldExpl = new Explanation();

                fieldExpl.Description = "fieldWeight(" + Enclosing_Instance.field + ":" + query + " in " + doc + "), product of:";

                PhraseScorer scorer = (PhraseScorer)Scorer(reader, true, false);

                if (scorer == null)
                {
                    return(new Explanation(0.0f, "no matching docs"));
                }
                Explanation tfExplanation = new Explanation();
                int         d             = scorer.Advance(doc);
                float       phraseFreq    = (d == doc) ? scorer.CurrentFreq() : 0.0f;

                tfExplanation.Value       = similarity.Tf(phraseFreq);
                tfExplanation.Description = "tf(phraseFreq=" + phraseFreq + ")";

                fieldExpl.AddDetail(tfExplanation);
                fieldExpl.AddDetail(idfExpl);

                Explanation fieldNormExpl = new Explanation();

                byte[] fieldNorms = reader.Norms(Enclosing_Instance.field);
                float  fieldNorm  = fieldNorms != null?Similarity.DecodeNorm(fieldNorms[doc]) : 1.0f;

                fieldNormExpl.Value       = fieldNorm;
                fieldNormExpl.Description = "fieldNorm(field=" + Enclosing_Instance.field + ", doc=" + doc + ")";
                fieldExpl.AddDetail(fieldNormExpl);

                fieldExpl.Value = tfExplanation.Value * idfExpl.Value * fieldNormExpl.Value;

                result.AddDetail(fieldExpl);

                // combine them
                result.Value = queryExpl.Value * fieldExpl.Value;

                if (queryExpl.Value == 1.0f)
                {
                    return(fieldExpl);
                }

                return(result);
            }
Example #11
0
			public AnonymousClassIDFExplanation1(int df, int max, float idf, Similarity enclosingInstance)
			{
				InitBlock(df, max, idf, enclosingInstance);
			}
Example #12
0
		public /*internal*/ BooleanScorer(Similarity similarity, int minNrShouldMatch,
            System.Collections.Generic.List<Scorer> optionalScorers, System.Collections.Generic.List<Scorer> prohibitedScorers)
            : base(similarity)
		{
			InitBlock();
			this.minNrShouldMatch = minNrShouldMatch;
			
			if (optionalScorers != null && optionalScorers.Count > 0)
			{
				foreach (Scorer scorer in optionalScorers)
				{
					maxCoord++;
					if (scorer.NextDoc() != NO_MORE_DOCS)
					{
						scorers = new SubScorer(scorer, false, false, bucketTable.NewCollector(0), scorers);
					}
				}
			}
			
			if (prohibitedScorers != null && prohibitedScorers.Count > 0)
			{
				foreach(Scorer scorer in prohibitedScorers)
				{
					int mask = nextMask;
					nextMask = nextMask << 1;
					prohibitedMask |= mask; // update prohibited mask
					if (scorer.NextDoc() != NO_MORE_DOCS)
					{
						scorers = new SubScorer(scorer, false, true, bucketTable.NewCollector(mask), scorers);
					}
				}
			}
			
			coordFactors = new float[maxCoord];
			Similarity sim = Similarity;
			for (int i = 0; i < maxCoord; i++)
			{
				coordFactors[i] = sim.Coord(i, maxCoord - 1);
			}
		}
			public MatchAllDocsWeight(MatchAllDocsQuery enclosingInstance, Searcher searcher)
			{
				InitBlock(enclosingInstance);
				this.similarity = searcher.Similarity;
			}
		/// <summary>Construct a <see cref="Similarity" /> that delegates all methods to another.</summary>
		/// <param name="delegee">the Similarity implementation to delegate to</param>
		public SimilarityDelegator(Similarity delegee)
		{
			this.delegee = delegee;
		}
Example #15
0
			public MultiPhraseWeight(MultiPhraseQuery enclosingInstance, Searcher searcher)
			{
				InitBlock(enclosingInstance);
				this.similarity = Enclosing_Instance.GetSimilarity(searcher);
				
				// compute idf
			    int maxDoc = searcher.MaxDoc;
                foreach (Term[] terms in enclosingInstance.termArrays)
                {
                    foreach (Term term in terms)
                    {
                        idf += similarity.Idf(searcher.DocFreq(term), maxDoc);
                    }
                }
			}
		internal SloppyPhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, int slop, byte[] norms):base(weight, tps, offsets, similarity, norms)
		{
			this.slop = slop;
		}
Example #17
0
		internal void  SetSimilarity(Similarity similarity)
		{
			lock (this)
			{
				this.similarity = similarity;
				for (int i = 0; i < threadStates.Length; i++)
					threadStates[i].docState.similarity = similarity;
			}
		}
Example #18
0
			public AnonymousClassIDFExplanation3(float fIdf, System.Text.StringBuilder exp, Similarity enclosingInstance)
			{
				InitBlock(fIdf, exp, enclosingInstance);
			}
Example #19
0
	    /// <summary>Expert: Set the Similarity implementation used by this IndexWriter.
		/// </summary>
		public virtual void  SetSimilarity(Similarity similarity)
		{
			EnsureOpen();
			this.similarity = similarity;
			docWriter.SetSimilarity(similarity);
		}
Example #20
0
 internal SloppyPhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, int slop, byte[] norms) : base(weight, tps, offsets, similarity, norms)
 {
     this.slop = slop;
 }
Example #21
0
			private void  InitBlock(int df, int max, float idf, Similarity enclosingInstance)
			{
				this.df = df;
				this.max = max;
				this.idf = idf;
				this.enclosingInstance = enclosingInstance;
			}
Example #22
0
			private readonly int maxDoc; // document count
			
			public CachedDfSource(Dictionary<Term,int> dfMap, int maxDoc, Similarity similarity)
			{
				this.dfMap = dfMap;
				this.maxDoc = maxDoc;
				Similarity = similarity;
			}
Example #23
0
			private void  InitBlock(float fIdf, System.Text.StringBuilder exp, Similarity enclosingInstance)
			{
				this.fIdf = fIdf;
				this.exp = exp;
				this.enclosingInstance = enclosingInstance;
			}
		public ConjunctionScorer(Similarity similarity, System.Collections.Generic.ICollection<Scorer> scorers)
            : this(similarity, scorers.ToArray())
		{
		}