public ActionResult TeachNN()
        {
            NeuralNetworkPredictor nn = new NeuralNetworkPredictor(GamesController.getMatchesInfo(),
                                                                   new List <OutputLayerWeights>(),
                                                                   new List <TeachedRBF>(),
                                                                   true);
            List <OutputLayerWeights> outputLayerWeightsForSaving = new List <OutputLayerWeights>();
            List <TeachedRBF>         teachedRBFsForSaving        = new List <TeachedRBF>();

            NeuralNetworkPredictor.prepareDataForSaving(outputLayerWeightsForSaving, teachedRBFsForSaving);
            saveNeuralNetwokToDataBase(outputLayerWeightsForSaving, teachedRBFsForSaving);
            return(PartialView("TeachNN"));
        }
        public ActionResult FutureEvents()
        {
            var outputLayerWeights            = neuralNetworkDb.OutputLayerWeights.ToList();
            var teachedRBFs                   = neuralNetworkDb.TeachedRBFs.ToList();
            List <MatchInfo> _matchesInfo     = GamesController.getMatchesInfo().Where(m => m.realResult == 3).ToList();
            GeneralPredictor generalPredictor = new GeneralPredictor(_matchesInfo, outputLayerWeights, teachedRBFs);

            if (NeuralNetworkPredictor.isNetworkChanged())
            {
                List <OutputLayerWeights> outputLayerWeightsForSaving = new List <OutputLayerWeights>();
                List <TeachedRBF>         teachedRBFsForSaving        = new List <TeachedRBF>();
                NeuralNetworkPredictor.prepareDataForSaving(outputLayerWeightsForSaving, teachedRBFsForSaving);
                saveNeuralNetwokToDataBase(outputLayerWeightsForSaving, teachedRBFsForSaving);
            }

            List <double[]> predictions          = new List <double[]>();
            List <double[]> realCoefficients     = new List <double[]>();
            List <double[]> adjustedCoefficients = new List <double[]>();

            double[] empty = new double[] { 0, 0, 0 };
            foreach (MatchInfo matchInfo in _matchesInfo)
            {
                if (matchInfo.realResult != 3)
                {
                    predictions.Add(empty);
                    realCoefficients.Add(empty);
                    adjustedCoefficients.Add(empty);
                }
                else
                {
                    predictions.Add(generalPredictor.predict(matchInfo));
                    realCoefficients.Add(CoefficientsCalculator.calculateRealCoefficients(generalPredictor.predict(matchInfo)));
                    adjustedCoefficients.Add(CoefficientsCalculator.calculateAdjustedCoefficients(generalPredictor.predict(matchInfo)));
                }
            }

            ViewBag.Message              = "Общее предсказание";
            ViewBag.Matches              = _matchesInfo;
            ViewBag.Predictions          = predictions;
            ViewBag.RealCoefficients     = realCoefficients;
            ViewBag.AdjustedCoefficients = adjustedCoefficients;
            ViewBag.i = 0;
            ViewBag.ResultsEncoder = ResultsEncoder.results;

            return(View());
        }
Example #3
0
        public ActionResult RatesInfo()
        {
            string           userId            = User.Identity.GetUserId();
            List <Rate>      rates             = ratesDb.Rates.Where(r => String.Equals(r.UserId, userId)).ToList();
            List <MatchInfo> _matchesInfo      = GamesController.getMatchesInfo();
            List <MatchInfo> _ratedMatchesInfo = new List <MatchInfo>();

            foreach (Rate rate in rates)
            {
                _ratedMatchesInfo.Add(_matchesInfo.Find(m => m.id == rate.MatchId));
            }

            ViewBag.Rates          = rates;
            ViewBag.Matches        = _ratedMatchesInfo;
            ViewBag.i              = 0;
            ViewBag.ResultsEncoder = ResultsEncoder.results;
            return(View());
        }