Example #1
0
        private NDArray _run <T>(T fetches, Dictionary <Tensor, NDArray> feed_dict = null)
        {
            var feed_dict_tensor = new Dictionary <Tensor, NDArray>();

            if (feed_dict != null)
            {
                foreach (var feed in feed_dict)
                {
                    feed_dict_tensor[feed.Key] = feed.Value;
                }
            }

            // Create a fetch handler to take care of the structure of fetches.
            var fetch_handler = new _FetchHandler <T>(_graph, fetches, feed_dict_tensor);

            // Run request and get response.
            // We need to keep the returned movers alive for the following _do_run().
            // These movers are no longer needed when _do_run() completes, and
            // are deleted when `movers` goes out of scope when this _run() ends.
            var _             = _update_with_movers();
            var final_fetches = fetch_handler.fetches();
            var final_targets = fetch_handler.targets();

            // We only want to really perform the run if fetches or targets are provided,
            // or if the call is a partial run that specifies feeds.
            var results = _do_run(final_targets.Select(x => (Operation)(object)x).ToList(), final_fetches, feed_dict_tensor);

            return(fetch_handler.build_results(null, results));
        }
Example #2
0
        private NDArray _run(object fetches, FeedItem[] feed_dict = null)
        {
            var feed_dict_tensor = new Dictionary <object, object>();
            var feed_map         = new Dictionary <object, object>();

            // Validate and process feed_dict.
            if (feed_dict != null)
            {
                foreach (var subfeed in feed_dict)
                {
                    var subfeed_t     = _graph.as_graph_element(subfeed.Key, allow_tensor: true, allow_operation: false);
                    var subfeed_dtype = subfeed_t.dtype.as_numpy_datatype();
                    switch (subfeed.Value)
                    {
                    case float floatVal:
                        feed_dict_tensor[subfeed_t] = (NDArray)floatVal;
                        break;

                    case int intVal:
                        feed_dict_tensor[subfeed_t] = (NDArray)intVal;
                        break;

                    case string str:
                        feed_dict_tensor[subfeed_t] = (NDArray)str;
                        break;

                    default:
                        throw new NotImplementedException("_run subfeed");
                    }
                    feed_map[subfeed_t.name] = (subfeed_t, subfeed.Value);
                }
            }

            // Create a fetch handler to take care of the structure of fetches.
            var fetch_handler = new _FetchHandler(_graph, fetches, feed_dict_tensor);

            // Run request and get response.
            // We need to keep the returned movers alive for the following _do_run().
            // These movers are no longer needed when _do_run() completes, and
            // are deleted when `movers` goes out of scope when this _run() ends.
            var _             = _update_with_movers();
            var final_fetches = fetch_handler.fetches();
            var final_targets = fetch_handler.targets();

            // We only want to really perform the run if fetches or targets are provided,
            // or if the call is a partial run that specifies feeds.
            var results = _do_run(final_targets.Select(x => (Operation)(object)x).ToList(), final_fetches, feed_dict_tensor);

            return(fetch_handler.build_results(this, results));
        }
Example #3
0
        private unsafe object _run(Tensor fetches, Dictionary <Tensor, object> feed_dict = null)
        {
            var feed_dict_tensor = new Dictionary <Tensor, NDArray>();

            if (feed_dict != null)
            {
                NDArray np_val = null;
                foreach (var feed in feed_dict)
                {
                    switch (feed.Value)
                    {
                    case float value:
                        np_val = np.asarray(value);
                        break;
                    }

                    feed_dict_tensor[feed.Key] = np_val;
                }
            }

            // Create a fetch handler to take care of the structure of fetches.
            var fetch_handler = new _FetchHandler(_graph, fetches);

            // Run request and get response.
            // We need to keep the returned movers alive for the following _do_run().
            // These movers are no longer needed when _do_run() completes, and
            // are deleted when `movers` goes out of scope when this _run() ends.
            var _             = _update_with_movers();
            var final_fetches = fetch_handler.fetches();
            var final_targets = fetch_handler.targets();

            // We only want to really perform the run if fetches or targets are provided,
            // or if the call is a partial run that specifies feeds.
            var results = _do_run(final_fetches);

            return(fetch_handler.build_results(null, results));
        }