/********************************************************
  * Function: add
  *******************************************************/
 public void add
 (
     int i
 )
 {
     m_set.Set(i);
 }
Example #2
0
        /** Self-test. */
        public static void _Main(string[] args)
        {
            const int    ITER  = 500;
            const int    RANGE = 65536;
            SparseBitSet a     = new SparseBitSet();

            CUtility.ASSERT(!a.Get(0) && !a.Get(1));
            CUtility.ASSERT(!a.Get(123329));
            a.Set(0); CUtility.ASSERT(a.Get(0) && !a.Get(1));
            a.Set(1); CUtility.ASSERT(a.Get(0) && a.Get(1));
            a.clearAll();
            CUtility.ASSERT(!a.Get(0) && !a.Get(1));
            Random r = new Random();
            Vector v = new Vector();

            for (int n = 0; n < ITER; n++)
            {
                int rr = ((r.Next() >> 1) % RANGE) << 1;
                a.Set(rr); v.addElement(rr);
                // check that all the numbers are there.
                CUtility.ASSERT(a.Get(rr) && !a.Get(rr + 1) && !a.Get(rr - 1));
                for (int i = 0; i < v.size(); i++)
                {
                    CUtility.ASSERT(a.Get((int)v.elementAt(i)));
                }
            }
            SparseBitSet b = (SparseBitSet)a.Clone();

            CUtility.ASSERT(a.Equals(b) && b.Equals(a));
            for (int n = 0; n < ITER / 2; n++)
            {
                int rr = (r.Next() >> 1) % v.size();
                int m  = (int)v.elementAt(rr);
                b.clear(m); v.removeElementAt(rr);
                // check that numbers are removed properly.
                CUtility.ASSERT(!b.Get(m));
            }
            CUtility.ASSERT(!a.Equals(b));
            SparseBitSet c = (SparseBitSet)a.Clone();
            SparseBitSet d = (SparseBitSet)a.Clone();

            c.and(a);
            CUtility.ASSERT(c.Equals(a) && a.Equals(c));
            c.xor(a);
            CUtility.ASSERT(!c.Equals(a) && c.size() == 0);
            d.or(b);
            CUtility.ASSERT(d.Equals(a) && !b.Equals(d));
            d.and(b);
            CUtility.ASSERT(!d.Equals(a) && b.Equals(d));
            d.xor(a);
            CUtility.ASSERT(!d.Equals(a) && !b.Equals(d));
            c.or(d); c.or(b);
            CUtility.ASSERT(c.Equals(a) && a.Equals(c));
            c = (SparseBitSet)d.Clone();
            c.and(b);
            CUtility.ASSERT(c.size() == 0);
            System.Console.WriteLine("Success.");
        }
        /***************************************************************
         * Function: machine
         * Description: Recursive descent regular expression parser.
         **************************************************************/
        private CNfa machine
        (
        )
        {
            CNfa         start;
            CNfa         p;
            SparseBitSet states;

            if (CUtility.DESCENT_DEBUG)
            {
                CUtility.enter("machine", m_spec.m_lexeme, m_spec.m_current_token);
            }

            start = CAlloc.newCNfa(m_spec);
            p     = start;

            states = m_lexGen.getStates();

            /* Begin: Added for states. */
            m_spec.m_current_token = CLexGen.EOS;
            m_lexGen.advance();
            /* End: Added for states. */

            if (CLexGen.END_OF_INPUT != m_spec.m_current_token) // CSA fix.
            {
                p.m_next = rule();

                processStates(states, p.m_next);
            }

            while (CLexGen.END_OF_INPUT != m_spec.m_current_token)
            {
                /* Make state changes HERE. */
                states = m_lexGen.getStates();

                /* Begin: Added for states. */
                m_lexGen.advance();
                if (CLexGen.END_OF_INPUT == m_spec.m_current_token)
                {
                    break;
                }
                /* End: Added for states. */

                p.m_next2 = CAlloc.newCNfa(m_spec);
                p         = p.m_next2;
                p.m_next  = rule();

                processStates(states, p.m_next);
            }

            // CSA: add pseudo-rules for BOL and EOF
            SparseBitSet all_states = new SparseBitSet();

            for (int i = 0; i < m_spec.m_states.Count; ++i)
            {
                all_states.Set(i);
            }
            p.m_next2       = CAlloc.newCNfa(m_spec);
            p               = p.m_next2;
            p.m_next        = CAlloc.newCNfa(m_spec);
            p.m_next.m_edge = CNfa.CCL;
            p.m_next.m_next = CAlloc.newCNfa(m_spec);
            p.m_next.m_set  = new CSet();
            p.m_next.m_set.add(m_spec.BOL);
            p.m_next.m_set.add(m_spec.EOF);
            p.m_next.m_next.m_accept = // do-nothing accept rule
                                       new CAccept(new char[0], 0, m_input.m_line_number + 1);
            processStates(all_states, p.m_next);
            // CSA: done.

            if (CUtility.DESCENT_DEBUG)
            {
                CUtility.leave("machine", m_spec.m_lexeme, m_spec.m_current_token);
            }

            return(start);
        }
        /** Compute minimum Set of character classes needed to disambiguate
         *  edges.  We optimistically assume that every character belongs to
         *  a single character class, and then incrementally split classes
         *  as we see edges that require discrimination between characters in
         *  the class. [CSA, 25-Jul-1999] */
        private void computeClasses(CSpec m_spec)
        {
            this.original_charset_size = m_spec.m_dtrans_ncols;
            this.ccls = new int[original_charset_size]; // initially all zero.

            int nextcls = 1;
            SparseBitSet clsA = new SparseBitSet(), clsB = new SparseBitSet();
            Hashtable h = new Hashtable();

            System.Console.Write("Working on character classes.");
            IEnumerator e=m_spec.m_nfa_states.elements();
            while ( e.MoveNext() )
            {
                CNfa nfa = (CNfa) e.Current;
                if (nfa.m_edge==CNfa.EMPTY || nfa.m_edge==CNfa.EPSILON)
                    continue; // no discriminatory information.
                clsA.clearAll(); clsB.clearAll();
                for (int i=0; i<ccls.Length; i++)
                    if (nfa.m_edge==i || // edge labeled with a character
                        nfa.m_edge==CNfa.CCL && nfa.m_set.contains(i)) // Set of characters
                        clsA.Set(ccls[i]);
                    else
                        clsB.Set(ccls[i]);
                // now figure out which character classes we need to split.
                clsA.and(clsB); // split the classes which show up on both sides of edge
                System.Console.Write(clsA.size()==0?".":":");
                if (clsA.size()==0) continue; // nothing to do.
                // and split them.
                h.Clear(); // h will map old to new class name
                for (int i=0; i<ccls.Length; i++)
                    if (clsA.Get(ccls[i])) // a split class
                        if (nfa.m_edge==i ||
                            nfa.m_edge==CNfa.CCL && nfa.m_set.contains(i))
                        { // on A side
                            int split = ccls[i];
                            if (!h.ContainsKey(split))
                                h.Add(split, (nextcls++)); // make new class
                            ccls[i] = (int)h[split];
                        }
            }
            System.Console.WriteLine();
            System.Console.WriteLine("NFA has "+nextcls+" distinct character classes.");

            this.mapped_charset_size = nextcls;
        }
        /** Compute minimum Set of character classes needed to disambiguate
         *  edges.  We optimistically assume that every character belongs to
         *  a single character class, and then incrementally split classes
         *  as we see edges that require discrimination between characters in
         *  the class. [CSA, 25-Jul-1999] */
        private void computeClasses(CSpec m_spec)
        {
            this.original_charset_size = m_spec.m_dtrans_ncols;
            this.ccls = new int[original_charset_size]; // initially all zero.

            int          nextcls = 1;
            SparseBitSet clsA = new SparseBitSet(), clsB = new SparseBitSet();
            Hashtable    h = new Hashtable();

            System.Console.Write("Working on character classes.");
            IEnumerator e = m_spec.m_nfa_states.elements();

            while (e.MoveNext())
            {
                CNfa nfa = (CNfa)e.Current;
                if (nfa.m_edge == CNfa.EMPTY || nfa.m_edge == CNfa.EPSILON)
                {
                    continue; // no discriminatory information.
                }
                clsA.clearAll(); clsB.clearAll();
                for (int i = 0; i < ccls.Length; i++)
                {
                    if (nfa.m_edge == i ||                               // edge labeled with a character
                        nfa.m_edge == CNfa.CCL && nfa.m_set.contains(i)) // Set of characters
                    {
                        clsA.Set(ccls[i]);
                    }
                    else
                    {
                        clsB.Set(ccls[i]);
                    }
                }
                // now figure out which character classes we need to split.
                clsA.and(clsB); // split the classes which show up on both sides of edge
                System.Console.Write(clsA.size() == 0?".":":");
                if (clsA.size() == 0)
                {
                    continue;                 // nothing to do.
                }
                // and split them.
                h.Clear(); // h will map old to new class name
                for (int i = 0; i < ccls.Length; i++)
                {
                    if (clsA.Get(ccls[i])) // a split class
                    {
                        if (nfa.m_edge == i ||
                            nfa.m_edge == CNfa.CCL && nfa.m_set.contains(i))
                        { // on A side
                            int split = ccls[i];
                            if (!h.ContainsKey(split))
                            {
                                h.Add(split, (nextcls++)); // make new class
                            }
                            ccls[i] = (int)h[split];
                        }
                    }
                }
            }
            System.Console.WriteLine();
            System.Console.WriteLine("NFA has " + nextcls + " distinct character classes.");

            this.mapped_charset_size = nextcls;
        }
        /***************************************************************
         * Function: reduce
         * Description:
         **************************************************************/
        private void reduce
        (
        )
        {
            int          i;
            int          j;
            int          k;
            int          nrows;
            int          reduced_ncols;
            int          reduced_nrows;
            SparseBitSet Set;
            CDTrans      dtrans;
            int          size;

            Set = new SparseBitSet();

            /* Save accept nodes and anchor entries. */
            size = m_spec.m_dtrans_vector.size();
            m_spec.m_anchor_array  = new int[size];
            m_spec.m_accept_vector = new Vector();
            for (i = 0; i < size; ++i)
            {
                dtrans = (CDTrans)m_spec.m_dtrans_vector.elementAt(i);
                m_spec.m_accept_vector.addElement(dtrans.m_accept);
                m_spec.m_anchor_array[i] = dtrans.m_anchor;
                dtrans.m_accept          = null;
            }

            /* Allocate column map. */
            m_spec.m_col_map = new int[m_spec.m_dtrans_ncols];
            for (i = 0; i < m_spec.m_dtrans_ncols; ++i)
            {
                m_spec.m_col_map[i] = -1;
            }

            /* Process columns for reduction. */
            for (reduced_ncols = 0; ; ++reduced_ncols)
            {
                if (CUtility.DEBUG)
                {
                    for (i = 0; i < reduced_ncols; ++i)
                    {
                        CUtility.ASSERT(-1 != m_spec.m_col_map[i]);
                    }
                }

                for (i = reduced_ncols; i < m_spec.m_dtrans_ncols; ++i)
                {
                    if (-1 == m_spec.m_col_map[i])
                    {
                        break;
                    }
                }

                if (i >= m_spec.m_dtrans_ncols)
                {
                    break;
                }

                if (CUtility.DEBUG)
                {
                    CUtility.ASSERT(false == Set.Get(i));
                    CUtility.ASSERT(-1 == m_spec.m_col_map[i]);
                }

                Set.Set(i);

                m_spec.m_col_map[i] = reduced_ncols;

                /* UNDONE: Optimize by doing all comparisons in one batch. */
                for (j = i + 1; j < m_spec.m_dtrans_ncols; ++j)
                {
                    if (-1 == m_spec.m_col_map[j] && true == col_equiv(i, j))
                    {
                        m_spec.m_col_map[j] = reduced_ncols;
                    }
                }
            }

            /* Reduce columns. */
            k = 0;
            for (i = 0; i < m_spec.m_dtrans_ncols; ++i)
            {
                if (Set.Get(i))
                {
                    ++k;

                    Set.clear(i);

                    j = m_spec.m_col_map[i];

                    if (CUtility.DEBUG)
                    {
                        CUtility.ASSERT(j <= i);
                    }

                    if (j == i)
                    {
                        continue;
                    }

                    col_copy(j, i);
                }
            }
            m_spec.m_dtrans_ncols = reduced_ncols;
            /* truncate m_dtrans at proper length (freeing extra) */
            trunc_col();

            if (CUtility.DEBUG)
            {
                CUtility.ASSERT(k == reduced_ncols);
            }

            /* Allocate row map. */
            nrows            = m_spec.m_dtrans_vector.Count;
            m_spec.m_row_map = new int[nrows];
            for (i = 0; i < nrows; ++i)
            {
                m_spec.m_row_map[i] = -1;
            }

            /* Process rows to reduce. */
            for (reduced_nrows = 0; ; ++reduced_nrows)
            {
                if (CUtility.DEBUG)
                {
                    for (i = 0; i < reduced_nrows; ++i)
                    {
                        CUtility.ASSERT(-1 != m_spec.m_row_map[i]);
                    }
                }

                for (i = reduced_nrows; i < nrows; ++i)
                {
                    if (-1 == m_spec.m_row_map[i])
                    {
                        break;
                    }
                }

                if (i >= nrows)
                {
                    break;
                }

                if (CUtility.DEBUG)
                {
                    CUtility.ASSERT(false == Set.Get(i));
                    CUtility.ASSERT(-1 == m_spec.m_row_map[i]);
                }

                Set.Set(i);

                m_spec.m_row_map[i] = reduced_nrows;

                /* UNDONE: Optimize by doing all comparisons in one batch. */
                for (j = i + 1; j < nrows; ++j)
                {
                    if (-1 == m_spec.m_row_map[j] && true == row_equiv(i, j))
                    {
                        m_spec.m_row_map[j] = reduced_nrows;
                    }
                }
            }

            /* Reduce rows. */
            k = 0;
            for (i = 0; i < nrows; ++i)
            {
                if (Set.Get(i))
                {
                    ++k;

                    Set.clear(i);

                    j = m_spec.m_row_map[i];

                    if (CUtility.DEBUG)
                    {
                        CUtility.ASSERT(j <= i);
                    }

                    if (j == i)
                    {
                        continue;
                    }

                    row_copy(j, i);
                }
            }
            m_spec.m_dtrans_vector.setSize(reduced_nrows);

            if (CUtility.DEBUG)
            {
                /*System.Console.WriteLine("k = " + k + "\nreduced_nrows = " + reduced_nrows + "");*/
                CUtility.ASSERT(k == reduced_nrows);
            }
        }
        /***************************************************************
          Function: reduce
          Description:
          **************************************************************/
        private void reduce(
            )
        {
            int i;
            int j;
            int k;
            int nrows;
            int reduced_ncols;
            int reduced_nrows;
            SparseBitSet Set;
            CDTrans dtrans;
            int size;

            Set = new SparseBitSet();

            /* Save accept nodes and anchor entries. */
            size = m_spec.m_dtrans_vector.size();
            m_spec.m_anchor_array = new int[size];
            m_spec.m_accept_vector = new Vector();
            for (i = 0; i < size; ++i)
            {
                dtrans = (CDTrans) m_spec.m_dtrans_vector.elementAt(i);
                m_spec.m_accept_vector.addElement(dtrans.m_accept);
                m_spec.m_anchor_array[i] = dtrans.m_anchor;
                dtrans.m_accept = null;
            }

            /* Allocate column map. */
            m_spec.m_col_map = new int[m_spec.m_dtrans_ncols];
            for (i = 0; i < m_spec.m_dtrans_ncols; ++i)
            {
                m_spec.m_col_map[i] = -1;
            }

            /* Process columns for reduction. */
            for (reduced_ncols = 0; ; ++reduced_ncols)
            {
                if (CUtility.DEBUG)
                {
                    for (i = 0; i < reduced_ncols; ++i)
                    {
                        CUtility.ASSERT(-1 != m_spec.m_col_map[i]);
                    }
                }

                for (i = reduced_ncols; i < m_spec.m_dtrans_ncols; ++i)
                {
                    if (-1 == m_spec.m_col_map[i])
                    {
                        break;
                    }
                }

                if (i >= m_spec.m_dtrans_ncols)
                {
                    break;
                }

                if (CUtility.DEBUG)
                {
                    CUtility.ASSERT(false == Set.Get(i));
                    CUtility.ASSERT(-1 == m_spec.m_col_map[i]);
                }

                Set.Set(i);

                m_spec.m_col_map[i] = reduced_ncols;

                /* UNDONE: Optimize by doing all comparisons in one batch. */
                for (j = i + 1; j < m_spec.m_dtrans_ncols; ++j)
                {
                    if (-1 == m_spec.m_col_map[j] && true == col_equiv(i,j))
                    {
                        m_spec.m_col_map[j] = reduced_ncols;
                    }
                }
            }

            /* Reduce columns. */
            k = 0;
            for (i = 0; i < m_spec.m_dtrans_ncols; ++i)
            {
                if (Set.Get(i))
                {
                    ++k;

                    Set.clear(i);

                    j = m_spec.m_col_map[i];

                    if (CUtility.DEBUG)
                    {
                        CUtility.ASSERT(j <= i);
                    }

                    if (j == i)
                    {
                        continue;
                    }

                    col_copy(j,i);
                }
            }
            m_spec.m_dtrans_ncols = reduced_ncols;
            /* truncate m_dtrans at proper length (freeing extra) */
            trunc_col();

            if (CUtility.DEBUG)
            {
                CUtility.ASSERT(k == reduced_ncols);
            }

            /* Allocate row map. */
            nrows = m_spec.m_dtrans_vector.Count;
            m_spec.m_row_map = new int[nrows];
            for (i = 0; i < nrows; ++i)
            {
                m_spec.m_row_map[i] = -1;
            }

            /* Process rows to reduce. */
            for (reduced_nrows = 0; ; ++reduced_nrows)
            {
                if (CUtility.DEBUG)
                {
                    for (i = 0; i < reduced_nrows; ++i)
                    {
                        CUtility.ASSERT(-1 != m_spec.m_row_map[i]);
                    }
                }

                for (i = reduced_nrows; i < nrows; ++i)
                {
                    if (-1 == m_spec.m_row_map[i])
                    {
                        break;
                    }
                }

                if (i >= nrows)
                {
                    break;
                }

                if (CUtility.DEBUG)
                {
                    CUtility.ASSERT(false == Set.Get(i));
                    CUtility.ASSERT(-1 == m_spec.m_row_map[i]);
                }

                Set.Set(i);

                m_spec.m_row_map[i] = reduced_nrows;

                /* UNDONE: Optimize by doing all comparisons in one batch. */
                for (j = i + 1; j < nrows; ++j)
                {
                    if (-1 == m_spec.m_row_map[j] && true == row_equiv(i,j))
                    {
                        m_spec.m_row_map[j] = reduced_nrows;
                    }
                }
            }

            /* Reduce rows. */
            k = 0;
            for (i = 0; i < nrows; ++i)
            {
                if (Set.Get(i))
                {
                    ++k;

                    Set.clear(i);

                    j = m_spec.m_row_map[i];

                    if (CUtility.DEBUG)
                    {
                        CUtility.ASSERT(j <= i);
                    }

                    if (j == i)
                    {
                        continue;
                    }

                    row_copy(j,i);
                }
            }
            m_spec.m_dtrans_vector.setSize(reduced_nrows);

            if (CUtility.DEBUG)
            {
                /*System.Console.WriteLine("k = " + k + "\nreduced_nrows = " + reduced_nrows + "");*/
                CUtility.ASSERT(k == reduced_nrows);
            }
        }
        /***************************************************************
          Function: machine
          Description: Recursive descent regular expression parser.
          **************************************************************/
        private CNfa machine(
            )
        {
            CNfa start;
            CNfa p;
            SparseBitSet states;

            if (CUtility.DESCENT_DEBUG)
            {
                CUtility.enter("machine",m_spec.m_lexeme,m_spec.m_current_token);
            }

            start = CAlloc.newCNfa(m_spec);
            p = start;

            states = m_lexGen.getStates();

            /* Begin: Added for states. */
            m_spec.m_current_token = CLexGen.EOS;
            m_lexGen.advance();
            /* End: Added for states. */

            if (CLexGen.END_OF_INPUT != m_spec.m_current_token) // CSA fix.
            {
                p.m_next = rule();

                processStates(states,p.m_next);
            }

            while (CLexGen.END_OF_INPUT != m_spec.m_current_token)
            {
                /* Make state changes HERE. */
                states = m_lexGen.getStates();

                /* Begin: Added for states. */
                m_lexGen.advance();
                if (CLexGen.END_OF_INPUT == m_spec.m_current_token)
                {
                    break;
                }
                /* End: Added for states. */

                p.m_next2 = CAlloc.newCNfa(m_spec);
                p = p.m_next2;
                p.m_next = rule();

                processStates(states,p.m_next);
            }

            // CSA: add pseudo-rules for BOL and EOF
            SparseBitSet all_states = new SparseBitSet();
            for (int i = 0; i < m_spec.m_states.Count; ++i)
                all_states.Set(i);
            p.m_next2 = CAlloc.newCNfa(m_spec);
            p = p.m_next2;
            p.m_next = CAlloc.newCNfa(m_spec);
            p.m_next.m_edge = CNfa.CCL;
            p.m_next.m_next = CAlloc.newCNfa(m_spec);
            p.m_next.m_set = new CSet();
            p.m_next.m_set.add(m_spec.BOL);
            p.m_next.m_set.add(m_spec.EOF);
            p.m_next.m_next.m_accept = // do-nothing accept rule
                new CAccept(new char[0], 0, m_input.m_line_number+1);
            processStates(all_states,p.m_next);
            // CSA: done.

            if (CUtility.DESCENT_DEBUG)
            {
                CUtility.leave("machine",m_spec.m_lexeme,m_spec.m_current_token);
            }

            return start;
        }
        public SparseBitSet getStates(
            )
        {
            int start_state;
            int count_state;
            SparseBitSet states;
            string name;
            object index;
            int i;
            int size;

            if (CUtility.DEBUG)
            {
                CUtility.ASSERT(null != this);
                CUtility.ASSERT(null != m_outstream);
                CUtility.ASSERT(null != m_input);
                CUtility.ASSERT(null != m_tokens);
                CUtility.ASSERT(null != m_spec);
            }

            states = null;

            /* Skip white space. */
            while (CUtility.isspace(m_input.m_line[m_input.m_line_index]))
            {
                ++m_input.m_line_index;

                while (m_input.m_line_index >= m_input.m_line_read)
                {
                    /* Must just be an empty line. */
                    if (m_input.getLine())
                    {
                        /* EOF found. */
                        return null;
                    }
                }
            }

            /* Look for states. */
            if ('<' == m_input.m_line[m_input.m_line_index])
            {
                ++m_input.m_line_index;

                states = new SparseBitSet();

                /* Parse states. */
                while (true)
                {
                    /* We may have reached the end of the line. */
                    while (m_input.m_line_index >= m_input.m_line_read)
                    {
                        if (m_input.getLine())
                        {
                            /* EOF found. */
                            CError.parse_error(CError.E_EOF,m_input.m_line_number);
                            return states;
                        }
                    }

                    while (true)
                    {
                        /* Skip white space. */
                        while (CUtility.isspace(m_input.m_line[m_input.m_line_index]))
                        {
                            ++m_input.m_line_index;

                            while (m_input.m_line_index >= m_input.m_line_read)
                            {
                                if (m_input.getLine())
                                {
                                    /* EOF found. */
                                    CError.parse_error(CError.E_EOF,m_input.m_line_number);
                                    return states;
                                }
                            }
                        }

                        if (',' != m_input.m_line[m_input.m_line_index])
                        {
                            break;
                        }

                        ++m_input.m_line_index;
                    }

                    if ('>' == m_input.m_line[m_input.m_line_index])
                    {
                        ++m_input.m_line_index;
                        if (m_input.m_line_index < m_input.m_line_read)
                        {
                            m_advance_stop = true;
                        }
                        return states;
                    }

                    /* Read in state name. */
                    start_state = m_input.m_line_index;
                    while (false == CUtility.isspace(m_input.m_line[m_input.m_line_index])
                        && ',' != m_input.m_line[m_input.m_line_index]
                        && '>' != m_input.m_line[m_input.m_line_index])
                    {
                        ++m_input.m_line_index;

                        if (m_input.m_line_index >= m_input.m_line_read)
                        {
                            /* End of line means end of state name. */
                            break;
                        }
                    }
                    count_state = m_input.m_line_index - start_state;

                    /* Save name after checking definition. */
                    name = new string(m_input.m_line,
                        start_state,
                        count_state);
                    index = (int) m_spec.m_states[name];
                    if (null == index)
                    {
                        /* Uninitialized state. */
                        System.Console.WriteLine("Uninitialized State Name: " + name);
                        CError.parse_error(CError.E_STATE,m_input.m_line_number);
                    }
                    states.Set((int)index);
                }
            }

            if (null == all_states)
            {
                all_states = new SparseBitSet();

                size = m_spec.m_states.Count;
                for (i = 0; i < size; ++i)
                {
                    all_states.Set(i);
                }
            }

            if (m_input.m_line_index < m_input.m_line_read)
            {
                m_advance_stop = true;
            }
            return all_states;
        }
 /** Self-test. */
 public static void _Main(string[] args)
 {
     const int ITER = 500;
     const int RANGE= 65536;
     SparseBitSet a = new SparseBitSet();
     CUtility.ASSERT(!a.Get(0) && !a.Get(1));
     CUtility.ASSERT(!a.Get(123329));
     a.Set(0); CUtility.ASSERT(a.Get(0) && !a.Get(1));
     a.Set(1); CUtility.ASSERT(a.Get(0) && a.Get(1));
     a.clearAll();
     CUtility.ASSERT(!a.Get(0) && !a.Get(1));
     Random r = new Random();
     Vector v = new Vector();
     for (int n=0; n<ITER; n++)
     {
         int rr = ((r.Next()>>1) % RANGE) << 1;
         a.Set(rr); v.addElement(rr);
         // check that all the numbers are there.
         CUtility.ASSERT(a.Get(rr) && !a.Get(rr+1) && !a.Get(rr-1));
         for (int i=0; i<v.size(); i++)
             CUtility.ASSERT(a.Get((int)v.elementAt(i)));
     }
     SparseBitSet b = (SparseBitSet) a.Clone();
     CUtility.ASSERT(a.Equals(b) && b.Equals(a));
     for (int n=0; n<ITER/2; n++)
     {
         int rr = (r.Next()>>1) % v.size();
         int m = (int)v.elementAt(rr);
         b.clear(m); v.removeElementAt(rr);
         // check that numbers are removed properly.
         CUtility.ASSERT(!b.Get(m));
     }
     CUtility.ASSERT(!a.Equals(b));
     SparseBitSet c = (SparseBitSet) a.Clone();
     SparseBitSet d = (SparseBitSet) a.Clone();
     c.and(a);
     CUtility.ASSERT(c.Equals(a) && a.Equals(c));
     c.xor(a);
     CUtility.ASSERT(!c.Equals(a) && c.size()==0);
     d.or(b);
     CUtility.ASSERT(d.Equals(a) && !b.Equals(d));
     d.and(b);
     CUtility.ASSERT(!d.Equals(a) && b.Equals(d));
     d.xor(a);
     CUtility.ASSERT(!d.Equals(a) && !b.Equals(d));
     c.or(d); c.or(b);
     CUtility.ASSERT(c.Equals(a) && a.Equals(c));
     c = (SparseBitSet) d.Clone();
     c.and(b);
     CUtility.ASSERT(c.size()==0);
     System.Console.WriteLine("Success.");
 }