Example #1
0
        /// <summary>
        /// If this is a Delaunay Triangulation of a pointset we need to fill so the triangle mesh gets a ConvexHull
        /// </summary>
        private static void FinalizationConvexHull(DTSweepContext tcx)
        {
            AdvancingFrontNode n1, n2;
            DelaunayTriangle   t1, t2;
            TriangulationPoint first, p1;

            n1    = tcx.Front.Head.Next;
            n2    = n1.Next;
            first = n1.Point;

            TurnAdvancingFrontConvex(tcx, n1, n2);

            // Lets remove triangles connected to the two "algorithm" points
            // XXX: When the first three nodes are points in a triangle we need to do a flip before
            // removing triangles or we will lose a valid triangle.
            // Same for last three nodes!
            // !!! If I implement ConvexHull for lower right and left boundary this fix should not be
            // needed and the removed triangles will be added again by default

            n1 = tcx.Front.Tail.Prev;
            if (n1.Triangle.Contains(n1.Next.Point) && n1.Triangle.Contains(n1.Prev.Point))
            {
                t1 = n1.Triangle.NeighborAcrossFrom(n1.Point);
                RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point));
                tcx.MapTriangleToNodes(n1.Triangle);
                tcx.MapTriangleToNodes(t1);
            }
            n1 = tcx.Front.Head.Next;
            if (n1.Triangle.Contains(n1.Prev.Point) && n1.Triangle.Contains(n1.Next.Point))
            {
                t1 = n1.Triangle.NeighborAcrossFrom(n1.Point);
                RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point));
                tcx.MapTriangleToNodes(n1.Triangle);
                tcx.MapTriangleToNodes(t1);
            }

            // Lower right boundary
            first       = tcx.Front.Head.Point;
            n2          = tcx.Front.Tail.Prev;
            t1          = n2.Triangle;
            p1          = n2.Point;
            n2.Triangle = null;
            do
            {
                tcx.RemoveFromList(t1);
                p1 = t1.PointCCWFrom(p1);
                if (p1 == first)
                {
                    break;
                }
                t2 = t1.NeighborCCWFrom(p1);
                t1.Clear();
                t1 = t2;
            } while (true);

            // Lower left boundary
            first = tcx.Front.Head.Next.Point;
            p1    = t1.PointCWFrom(tcx.Front.Head.Point);
            t2    = t1.NeighborCWFrom(tcx.Front.Head.Point);
            t1.Clear();
            t1 = t2;
            while (p1 != first)
            {
                tcx.RemoveFromList(t1);
                p1 = t1.PointCCWFrom(p1);
                t2 = t1.NeighborCCWFrom(p1);
                t1.Clear();
                t1 = t2;
            }

            // Remove current head and tail node now that we have removed all triangles attached
            // to them. Then set new head and tail node points
            tcx.Front.Head      = tcx.Front.Head.Next;
            tcx.Front.Head.Prev = null;
            tcx.Front.Tail      = tcx.Front.Tail.Prev;
            tcx.Front.Tail.Next = null;
        }
Example #2
0
        private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point)
        {
            TriangulationPoint p1, p2;


            if (triangle == null)
            {
                return;                 // TODO: Added by Kronnect Games
            }
            if (IsEdgeSideOfTriangle(triangle, ep, eq))
            {
                return;
            }

            p1 = triangle.PointCCWFrom(point);
            Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep);

            if (o1 == Orientation.Collinear)
            {
                if (triangle.Contains(eq) && triangle.Contains(p1))
                {
                    triangle.MarkConstrainedEdge(eq, p1);
                    // We are modifying the constraint maybe it would be better to
                    // not change the given constraint and just keep a variable for the new constraint
                    tcx.EdgeEvent.ConstrainedEdge.Q = p1;
                    triangle = triangle.NeighborAcrossFrom(point);
                    EdgeEvent(tcx, ep, p1, triangle, p1);
                }
                else
                {
                    throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p1);
                }
                return;
            }

            p2 = triangle.PointCWFrom(point);
            Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep);

            if (o2 == Orientation.Collinear)
            {
                if (triangle.Contains(eq) && triangle.Contains(p2))
                {
                    triangle.MarkConstrainedEdge(eq, p2);
                    // We are modifying the constraint maybe it would be better to
                    // not change the given constraint and just keep a variable for the new constraint
                    tcx.EdgeEvent.ConstrainedEdge.Q = p2;
                    triangle = triangle.NeighborAcrossFrom(point);
                    EdgeEvent(tcx, ep, p2, triangle, p2);
                }
                else
                {
                    throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p2);
                }
                return;
            }

            if (o1 == o2)
            {
                // Need to decide if we are rotating CW or CCW to get to a triangle
                // that will cross edge
                if (o1 == Orientation.CW)
                {
                    triangle = triangle.NeighborCCWFrom(point);
                }
                else
                {
                    triangle = triangle.NeighborCWFrom(point);
                }
                EdgeEvent(tcx, ep, eq, triangle, point);
            }
            else
            {
                // This triangle crosses constraint so lets flippin start!
                FlipEdgeEvent(tcx, ep, eq, triangle, point);
            }
        }
Example #3
0
        /// <summary>
        /// Returns true if triangle was legalized
        /// </summary>
        private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t)
        {
            // To legalize a triangle we start by finding if any of the three edges
            // violate the Delaunay condition
            for (int i = 0; i < 3; i++)
            {
                // TODO: fix so that cEdge is always valid when creating new triangles then we can check it here
                //       instead of below with ot
                if (t.EdgeIsDelaunay [i])
                {
                    continue;
                }

                DelaunayTriangle ot = t.Neighbors [i];
                if (ot == null)
                {
                    continue;
                }

                TriangulationPoint p  = t.Points [i];
                TriangulationPoint op = ot.OppositePoint(t, p);
                int oi = ot.IndexOf(op);
                // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
                // then we should not try to legalize
                if (ot.EdgeIsConstrained [oi] || ot.EdgeIsDelaunay [oi])
                {
                    t.SetConstrainedEdgeAcross(p, ot.EdgeIsConstrained [oi]);                      // XXX: have no good way of setting this property when creating new triangles so lets set it here
                    continue;
                }

                if (!TriangulationUtil.SmartIncircle(p, t.PointCCWFrom(p), t.PointCWFrom(p), op))
                {
                    continue;
                }

                // Lets mark this shared edge as Delaunay
                t.EdgeIsDelaunay [i]   = true;
                ot.EdgeIsDelaunay [oi] = true;

                // Lets rotate shared edge one vertex CW to legalize it
                RotateTrianglePair(t, p, ot, op);

                // We now got one valid Delaunay Edge shared by two triangles
                // This gives us 4 new edges to check for Delaunay

                // Make sure that triangle to node mapping is done only one time for a specific triangle
                if (!Legalize(tcx, t))
                {
                    tcx.MapTriangleToNodes(t);
                }
                if (!Legalize(tcx, ot))
                {
                    tcx.MapTriangleToNodes(ot);
                }

                // Reset the Delaunay edges, since they only are valid Delaunay edges
                // until we add a new triangle or point.
                // XXX: need to think about this. Can these edges be tried after we
                //      return to previous recursive level?
                t.EdgeIsDelaunay [i]   = false;
                ot.EdgeIsDelaunay [oi] = false;

                // If triangle have been legalized no need to check the other edges since
                // the recursive legalization will handles those so we can end here.
                return(true);
            }
            return(false);
        }