Example #1
1
        protected override async Task LoadContent()
        {
            await base.LoadContent();

            wireframeState = new RasterizerStateDescription(CullMode.Back) { FillMode = FillMode.Wireframe };

            simpleEffect = new EffectInstance(new Effect(GraphicsDevice, SpriteEffect.Bytecode));

            // TODO GRAPHICS REFACTOR
            simpleEffect.Parameters.Set(TexturingKeys.Texture0, UVTexture);
            simpleEffect.UpdateEffect(GraphicsDevice);

            primitives = new List<GeometricPrimitive>();

            // Creates all primitives
            primitives = new List<GeometricPrimitive>
                             {
                                 GeometricPrimitive.Plane.New(GraphicsDevice),
                                 GeometricPrimitive.Cube.New(GraphicsDevice),
                                 GeometricPrimitive.Sphere.New(GraphicsDevice),
                                 GeometricPrimitive.GeoSphere.New(GraphicsDevice),
                                 GeometricPrimitive.Cylinder.New(GraphicsDevice),
                                 GeometricPrimitive.Torus.New(GraphicsDevice),
                                 GeometricPrimitive.Teapot.New(GraphicsDevice),
                                 GeometricPrimitive.Capsule.New(GraphicsDevice, 0.5f, 0.3f),
                                 GeometricPrimitive.Cone.New(GraphicsDevice)
                             };


            view = Matrix.LookAtRH(new Vector3(0, 0, 5), new Vector3(0, 0, 0), Vector3.UnitY);

            Window.AllowUserResizing = true;
        }
 public void FromMatrix(ref Matrix matrix)
 {
     Position = matrix.Translation;
     Quaternion q;
     Quaternion.CreateFromRotationMatrix(ref matrix, out q);
     Orientation = new HalfVector4(q.ToVector4());
 }
Example #3
0
 /// <summary>
 /// For each input vector (which are rows of the matrix <paramref name="samples"/>) the method finds k &lt;= get_max_k() nearest neighbor. In case of regression, the predicted result will be a mean value of the particular vector's neighbor responses. In case of classification the class is determined by voting.
 /// </summary>
 /// <param name="samples">The sample matrix where each row is a sample</param>
 /// <param name="k">The number of nearest neighbor to find</param>
 /// <param name="results">
 /// Can be null if not needed.
 /// If regression, return a mean value of the particular vector's neighbor responses;
 /// If classification, return the class determined by voting.
 /// </param>
 /// <param name="kNearestNeighbors">Should be null if not needed. Setting it to non-null values incures a performance panalty. A matrix of (k * samples.Rows) rows and (samples.Cols) columns that will be filled the data of the K nearest-neighbor for each sample</param>
 /// <param name="neighborResponses">Should be null if not needed. The response of the neighbors. A vector of k*_samples->rows elements.</param>
 /// <param name="dist">Should be null if not needed. The distances from the input vectors to the neighbors. A vector of k*_samples->rows elements.</param>
 /// <returns>In case of regression, the predicted result will be a mean value of the particular vector's neighbor responses. In case of classification the class is determined by voting</returns>
 public float FindNearest(
     Matrix<float> samples,
     int k,
     Matrix<float> results,
     Matrix<float> kNearestNeighbors,
     Matrix<float> neighborResponses,
     Matrix<float> dist)
 {
     IntPtr[] neighbors = null;
      if (kNearestNeighbors != null)
      {
     Debug.Assert(kNearestNeighbors.Rows == k * samples.Rows && kNearestNeighbors.Cols == samples.Cols, "The kNeighbors must have (k*samples.Rows) rows and samples.Cols columns.");
     neighbors = new IntPtr[k * samples.Rows];
      }
      float res = MlInvoke.CvKNearestFindNearest(_ptr, samples.Ptr, k, results, neighbors, neighborResponses, dist);
      if (kNearestNeighbors != null)
      {
     IntPtr data; int step; Size size;
     CvInvoke.cvGetRawData(kNearestNeighbors.Ptr, out data, out step, out size);
     Int64 dataAddress = data.ToInt64();
     int elements = k * samples.Rows;
     int length = samples.Cols * sizeof(float);
     for (int i = 0; i < elements; i++)
     {
        Emgu.Util.Toolbox.memcpy(new IntPtr(dataAddress + i * step), neighbors[i], length);
     }
      }
      return res;
 }
        public static void InverseDeterminant(Matrix matrix, out Matrix inverse, out double determinant)
        {
            int n = matrix.Rows;

            if (matrix.Columns != n)
            {
                throw new ArgumentException("The matrix isn't a square matrix.");
            }

            double[,] a = matrix.ToArray();

            if (!trfac.spdmatrixcholesky(ref a, n, false))
            {
                throw new ArithmeticException();
            }

            determinant = matdet.spdmatrixcholeskydet(ref a, n);

            int info = 0;
            matinv.matinvreport rep = new matinv.matinvreport();
            matinv.spdmatrixcholeskyinverse(ref a, n, false, ref info, ref rep);

            for (int i = 0; i < n; i++)
            {
                for (int j = i + 1; j < n; j++)
                {
                    a[i, j] = a[j, i];
                }
            }

            inverse = new Matrix(a);
        }
Example #5
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
        /// QR factorization when the constructor is called and cache it's factorization.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        public UserQR(Matrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount < matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixDimensions);
            }

            MatrixR = matrix.Clone();
            MatrixQ = matrix.CreateMatrix(matrix.RowCount, matrix.RowCount);

            for (var i = 0; i < matrix.RowCount; i++)
            {
                MatrixQ.At(i, i, 1.0);
            }

            var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
            var u = new double[minmn][];
            for (var i = 0; i < minmn; i++)
            {
                u[i] = GenerateColumn(MatrixR, i, matrix.RowCount - 1, i);
                ComputeQR(u[i], MatrixR, i, matrix.RowCount - 1, i + 1, matrix.ColumnCount - 1);
            }

            for (var i = minmn - 1; i >= 0; i--)
            {
                ComputeQR(u[i], MatrixQ, i, matrix.RowCount - 1, i, matrix.RowCount - 1);
            }
        }
Example #6
0
 public void TestInit()
 {
     var matrix = new Matrix<int>(5, 5);
     int[] row = { 2, 2, 2, 2, 2 };
     matrix.Init(2);
     Assert.AreEqual(row, matrix.GetRow(2));
 }
Example #7
0
        public void Matrix_Conversion_ToXna()
        {
            var matrix = new Matrix(
                11, 12, 13, 14,
                21, 22, 23, 24,
                31, 32, 33, 34,
                41, 42, 43, 44);

            XnaMatrix xnaMatrix = matrix.ToXna();

            Assert.AreEqual(matrix.R1C1, xnaMatrix.M11);
            Assert.AreEqual(matrix.R1C2, xnaMatrix.M12);
            Assert.AreEqual(matrix.R1C3, xnaMatrix.M13);
            Assert.AreEqual(matrix.R1C4, xnaMatrix.M14);

            Assert.AreEqual(matrix.R2C1, xnaMatrix.M21);
            Assert.AreEqual(matrix.R2C2, xnaMatrix.M22);
            Assert.AreEqual(matrix.R2C3, xnaMatrix.M23);
            Assert.AreEqual(matrix.R2C4, xnaMatrix.M24);

            Assert.AreEqual(matrix.R3C1, xnaMatrix.M31);
            Assert.AreEqual(matrix.R3C2, xnaMatrix.M32);
            Assert.AreEqual(matrix.R3C3, xnaMatrix.M33);
            Assert.AreEqual(matrix.R3C4, xnaMatrix.M34);

            Assert.AreEqual(matrix.R4C1, xnaMatrix.M41);
            Assert.AreEqual(matrix.R4C2, xnaMatrix.M42);
            Assert.AreEqual(matrix.R4C3, xnaMatrix.M43);
            Assert.AreEqual(matrix.R4C4, xnaMatrix.M44);
        }
 /// <summary>
 /// Cholesky algorithm for symmetric and positive definite matrix.
 /// </summary>
 /// <param name="matrix">Square, symmetric matrix.</param>
 public CholeskyDecomposition(Matrix matrix)
 {
     // Initialize.
     double[][] a = matrix.Data;
     n = matrix.Rows;
     l = EngineArray.AllocateDouble2D(n, n);
     isspd = (matrix.Cols == n);
     // Main loop.
     for (int j = 0; j < n; j++)
     {
         double[] lrowj = l[j];
         double d = 0.0;
         for (int k = 0; k < j; k++)
         {
             double[] lrowk = l[k];
             double s = 0.0;
             for (int i = 0; i < k; i++)
             {
                 s += lrowk[i] * lrowj[i];
             }
             s = (a[j][k] - s) / l[k][k];
             lrowj[k] = s;
             d = d + s * s;
             isspd = isspd & (a[k][j] == a[j][k]);
         }
         d = a[j][j] - d;
         isspd = isspd & (d > 0.0);
         l[j][j] = Math.Sqrt(Math.Max(d, 0.0));
         for (int k = j + 1; k < n; k++)
         {
             l[j][k] = 0.0;
         }
     }
 }
Example #9
0
        public static void Test2()
        {
            const uint MARGIN = 1;

            Matrix mA = new Matrix(2 + MARGIN, 3 + MARGIN);
            Matrix mB = new Matrix(3, 2);
            Matrix mC = new Matrix(2, 2);

            mA.SetValue(0 + MARGIN, 0 + MARGIN, 0.11);
            mA.SetValue(0 + MARGIN, 1 + MARGIN, 0.12);
            mA.SetValue(0 + MARGIN, 2 + MARGIN, 0.13);
            mA.SetValue(1 + MARGIN, 0 + MARGIN, 0.21);
            mA.SetValue(1 + MARGIN, 1 + MARGIN, 0.22);
            mA.SetValue(1 + MARGIN, 2 + MARGIN, 0.23);

            mB.SetValue(0, 0, 1011);
            mB.SetValue(0, 1, 1012);
            mB.SetValue(1, 0, 1021);
            mB.SetValue(1, 1, 1022);
            mB.SetValue(2, 0, 1031);
            mB.SetValue(2, 1, 1032);

            MatrixView mViewA = new MatrixView(mA, MARGIN, MARGIN, mA.Columns - MARGIN, mA.Rows - MARGIN);
            MatrixView mViewB = new MatrixView(mB, 0, 0, mB.Columns, mB.Rows);
            MatrixView mViewC = new MatrixView(mC, 0, 0, mC.Columns, mC.Rows);
            Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mViewA, mViewB, 0.0, ref mViewC);

            Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
            Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
        }
Example #10
0
        public static void Test()
        {
            Matrix mA = new Matrix(2, 3);
            Matrix mB = new Matrix(3, 2);
            Matrix mC = new Matrix(2, 2);

            mA.SetValue(0, 0, 0.11);
            mA.SetValue(0, 1, 0.12);
            mA.SetValue(0, 2, 0.13);
            mA.SetValue(1, 0, 0.21);
            mA.SetValue(1, 1, 0.22);
            mA.SetValue(1, 2, 0.23);

            mB.SetValue(0, 0, 1011);
            mB.SetValue(0, 1, 1012);
            mB.SetValue(1, 0, 1021);
            mB.SetValue(1, 1, 1022);
            mB.SetValue(2, 0, 1031);
            mB.SetValue(2, 1, 1032);

            Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mA, mB, 0.0, ref mC);

            Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
            Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
        }
Example #11
0
        /// <summary>
        /// Given an input feature, a feature space and its associated labels, and a positive integer 'k',
        /// Determines the 'k' nearest neighbor label for the input feature. The 'k' value corresponds
        /// to the number of nearest neighbors to use in the voting process.
        /// 
        /// <remarks> 
        /// "When I have this grid of data points, and I provide one additional example row, find the 'k' number
        /// of rows that are most similar, count up the number of occurrences of each label for each row (1 to 'k'), 
        /// and choose the label with the highest occurrence."
        /// </remarks> 
        /// <see href="http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm" />
        /// </summary>
        /// <param name="distanceType">The type of equation to use when measuring the distance between each data point</param>
        /// <param name="input">The matrix row to input; must have the same number of columns as the feature space</param>
        /// <param name="featureSpace">The feature space matrix; everything we know</param>
        /// <param name="labels">The results for each feature space row; what we call each collection of data points</param>
        /// <param name="k">The number of nearest neighbors to include in the voting; the label with the most occurrences in 'k' neighbors wins</param>
        /// <returns></returns>
        public static string Classify(DistanceType distanceType, Number[] input, Matrix featureSpace, IList<string> labels, int k)
        {
            if (labels.Count() != featureSpace.Rows)
            {
                throw new ArgumentException("The number of labels must match the number of rows of data in the feature space", "labels");
            }

            var distances = CalculateDistances(distanceType, featureSpace, input);

            var nearestNeighbors = distances.OrderByDescending(d => d.Value).Take(k);

            var votes = new Dictionary<string, int>(k);

            foreach (var label in nearestNeighbors.Select(neighbor => labels[neighbor.Key]))
            {
                if (votes.ContainsKey(label))
                {
                    votes[label]++;
                }
                else
                {
                    votes.Add(label, 1);
                }
            }

            var nearest = votes.OrderByDescending(v => v.Value).First().Key;

            return nearest;
        }
Example #12
0
		public void AddChildShape(ref Matrix localTransform, CollisionShape shape)
		{
			m_updateRevision++;
			//m_childTransforms.push_back(localTransform);
			//m_childShapes.push_back(shape);
			CompoundShapeChild child = new CompoundShapeChild();
			child.m_transform = localTransform;
			child.m_childShape = shape;
			child.m_childShapeType = shape.ShapeType;
			child.m_childMargin = shape.Margin;

			//extend the local aabbMin/aabbMax
			Vector3 localAabbMin = new Vector3();
			Vector3 localAabbMax = new Vector3();
			shape.GetAabb(ref localTransform, ref localAabbMin, ref localAabbMax);
			MathUtil.VectorMin(ref localAabbMin, ref m_localAabbMin);
			MathUtil.VectorMax(ref localAabbMax, ref m_localAabbMax);

			if (m_dynamicAabbTree != null)
			{
				DbvtAabbMm bounds = DbvtAabbMm.FromMM(ref localAabbMin, ref localAabbMax);
				int index = m_children.Count;
				child.m_treeNode = m_dynamicAabbTree.Insert(ref bounds, (Object)index);
			}

			m_children.Add(child);
		}
		public HingeConstraint(RigidBody rigidBodyA, Matrix rigidBodyAFrame, bool useReferenceFrameA = false)
			: base(btHingeConstraint_new8(rigidBodyA._native, ref rigidBodyAFrame,
				useReferenceFrameA))
		{
			_rigidBodyA = rigidBodyA;
            _rigidBodyB = GetFixedBody();
		}
		/// <summary>
		/// 
		/// </summary>
		void ComputeEnvLightsTiles ( Matrix view, Matrix proj, LightSet lightSet )
		{
			var vp = Game.GraphicsDevice.DisplayBounds;

			envLightData = Enumerable
					.Range(0,RenderSystem.MaxEnvLights)
					.Select( i => new EnvLightGPU(){ Position = Vector4.Zero, Intensity = Vector4.Zero })
					.ToArray();

			int index = 0;

			foreach ( var light in lightSet.EnvLights ) {

				Vector4 min, max;

				var visible = GetSphereExtent( view, proj, light.Position, vp, light.RadiusOuter, out min, out max );

				/*if (!visible) {
					continue;
				} */

				envLightData[index].Position		=	new Vector4( light.Position, light.RadiusOuter );
				envLightData[index].Intensity		=	new Vector4( light.Intensity.ToVector3(), 1.0f / light.RadiusOuter / light.RadiusOuter );
				envLightData[index].ExtentMax		=	max;
				envLightData[index].ExtentMin		=	min;
				envLightData[index].InnerOuterRadius=	new Vector4( light.RadiusInner, light.RadiusOuter, 0, 0 );

				index++;
			}

			envLightBuffer.SetData( envLightData );
		}
        static void Main()
        {
            var myMatrix = new Matrix<double>(3, 3);

            helper.PrintColorText("Filling Matrix:\n\n", "cyan");

            for (int i = 0; i < myMatrix.Rows; i++)
            {
                for (int j = 0; j < myMatrix.Cols; j++)
                {
                    myMatrix[i, j] = (i + 1) * (j + 1);
                    helper.PrintColorText(myMatrix[i, j].ToString() + "\n", "green");
                }
            }

            Console.WriteLine();

            IIterator iterator = myMatrix.GetIterator();

            helper.PrintColorText("Iterationg Matrix in reverse:\n\n", "cyan");

            while (!iterator.IsDone())
            {
                helper.PrintColorText(iterator.CurrentItem().ToString() + "\n", "green");
                iterator.Next();
            }

            Console.WriteLine();
        }
Example #16
0
File: GMM.cs Project: tdav/emocije
        protected override void Classify()
        {
            for (int i = 0; i < FinalFeatures.Count(); i++)
            {
                if (Double.IsNaN(FinalFeatures[i]))
                    FinalFeatures[i] = 0;
            }
            Matrix x = new Matrix(11, 1);
            int j=0;
            foreach(int i in indices)
                x[i, 0] = FinalFeatures[j++];

            List<double> prob = new List<double>();
            for (int i = 0; i < 5; i++)
            {
                double aa =  GaussDistrib.Probability(x, mus[i], sigmas[i]);
                prob.Add(weight[i] * aa);
            }

            EmoClassifierResult res = new EmoClassifierResult();

            res.Anger = prob[0];
            res.Sadness = prob[1];
            res.Neutral = prob[2];
            res.Joy = prob[3];
            res.Fear = prob[4];

            ClassifierEventArgs e = new ClassifierEventArgs();
            e.Result = res;
            ClassificationComplete.Invoke(this, e);
        }
Example #17
0
        protected override async Task LoadContent()
        {
            await base.LoadContent();

            var view = Matrix.LookAtRH(new Vector3(2,2,2), new Vector3(0, 0, 0), Vector3.UnitY);
            var projection = Matrix.PerspectiveFovRH((float)Math.PI / 4.0f, (float)GraphicsDevice.BackBuffer.ViewWidth / GraphicsDevice.BackBuffer.ViewHeight, 0.1f, 100.0f);
            worldViewProjection = Matrix.Multiply(view, projection);

            geometry = GeometricPrimitive.Cube.New(GraphicsDevice);
            simpleEffect = new Effect(GraphicsDevice, SpriteEffect.Bytecode);
            parameterCollection = new ParameterCollection();
            parameterCollectionGroup = new EffectParameterCollectionGroup(GraphicsDevice, simpleEffect, new[] { parameterCollection });
            parameterCollection.Set(TexturingKeys.Texture0, UVTexture);
            
            // TODO DisposeBy is not working with device reset
            offlineTarget0 = Texture.New2D(GraphicsDevice, 512, 512, PixelFormat.R8G8B8A8_UNorm, TextureFlags.ShaderResource | TextureFlags.RenderTarget).DisposeBy(this);

            offlineTarget1 = Texture.New2D(GraphicsDevice, 512, 512, PixelFormat.R8G8B8A8_UNorm, TextureFlags.ShaderResource | TextureFlags.RenderTarget).DisposeBy(this);
            offlineTarget2 = Texture.New2D(GraphicsDevice, 512, 512, PixelFormat.R8G8B8A8_UNorm, TextureFlags.ShaderResource | TextureFlags.RenderTarget).DisposeBy(this);

            depthBuffer = Texture.New2D(GraphicsDevice, 512, 512, PixelFormat.D16_UNorm, TextureFlags.DepthStencil).DisposeBy(this);

            width = GraphicsDevice.BackBuffer.ViewWidth;
            height = GraphicsDevice.BackBuffer.ViewHeight;
        }
Example #18
0
        /// <summary>
        /// エフェクトにマトリックスを適用
        /// </summary>
        /// <param name="mode">描画モード</param>
        /// <param name="world">ワールド</param>
        public virtual void SetParams(MMDDrawingMode mode, ref Matrix world)
        {
            Matrix view, projection;
            //カメラ情報の取得
            Viewport viewport = effect.Device.Viewport;
            float aspectRatio = (float)viewport.Width / (float)viewport.Height;
            SlimMMDXCore.Instance.Camera.GetCameraParam(aspectRatio, out view, out projection);

            //マトリクス処理
            effect.SetValue("World", world);
            effect.SetValue("View", view);
            effect.SetValue("Projection", projection);
            effect.SetValue("EyePosition", SlimMMDXCore.Instance.Camera.Position);
            //ライティング処理
            Vector3 color, dir;
            SlimMMDXCore.Instance.Light.GetLightParam(out color, out dir);
            effect.SetValue("AmbientLightColor", color);
            effect.SetValue("DirLight0Direction", dir);
            switch (mode)
            {
                case MMDDrawingMode.Normal:
                    effect.Technique = "MMDEffect";
                    break;
                case MMDDrawingMode.Edge:
                    effect.Technique = "MMDNormalDepth";
                    break;
                default:
                    throw new NotImplementedException();
            }
        }
Example #19
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
        /// QR factorization when the constructor is called and cache it's factorization.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <param name="method">The QR factorization method to use.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        public static UserQR Create(Matrix<Complex> matrix, QRMethod method = QRMethod.Full)
        {
            if (matrix.RowCount < matrix.ColumnCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
            }

            Matrix<Complex> q;
            Matrix<Complex> r;

            var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
            var u = new Complex[minmn][];

            if (method == QRMethod.Full)
            {
                r = matrix.Clone();
                q = Matrix<Complex>.Build.SameAs(matrix, matrix.RowCount, matrix.RowCount);

                for (var i = 0; i < matrix.RowCount; i++)
                {
                    q.At(i, i, 1.0f);
                }

                for (var i = 0; i < minmn; i++)
                {
                    u[i] = GenerateColumn(r, i, i);
                    ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
                }

                for (var i = minmn - 1; i >= 0; i--)
                {
                    ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.MaxDegreeOfParallelism);
                }
            }
            else
            {
                q = matrix.Clone();

                for (var i = 0; i < minmn; i++)
                {
                    u[i] = GenerateColumn(q, i, i);
                    ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
                }

                r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
                q.Clear();

                for (var i = 0; i < matrix.ColumnCount; i++)
                {
                    q.At(i, i, 1.0f);
                }

                for (var i = minmn - 1; i >= 0; i--)
                {
                    ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
                }
            }

            return new UserQR(q, r, method);
        }
        /// <summary>
        /// Constructor or added a new light to the scene
        /// </summary>
        /// <param name="type">the light type you wish to have or default of point</param>
        public LightClass(LightType type = LightType.Point)
        {
            if (type == LightType.Point)
            {
                light.Type = type;
                light.Diffuse = Color.White;
                light.Ambient = Color.White;
                light.Specular = Color.White;
                light.Position = Vector3.Zero;
                light.Range = 100.0f;

            }
            else if (type == LightType.Directional)
            {
                light.Type = type;
                light.Direction = Vector3.Zero;
                light.Ambient = Color.White;
                light.Diffuse = Color.White;
                light.Specular = Color.White;
                light.Range = 100.0f;
            }

            isLightEnabled = false;
            Type = type.ToString();
            Position = Vector3.Zero;
            Direction = Vector3.Zero;
            world = Matrix.Identity;
            mesh = Mesh.CreateSphere(DeviceManager.LocalDevice, .1f, 10, 10);

            material.Diffuse = Color.White;
            material.Ambient = Color.White;

            DeviceManager.LocalDevice.Material = material;
        }
Example #21
0
        public void TestCreateMatrix()
        {
            var matrix = new Matrix<int>(2, 2);

            var other_matrix = matrix.CreateMatrix(3, 3);
            Assert.IsInstanceOfType(matrix.GetType(), other_matrix);
        }
Example #22
0
        public bool Initialize(Device device, DeviceContext deviceContext, IntPtr windowHandle, int screanWidth, int screenHeight, Matrix baseViewMatrix)
        {
            // Store the screen width and height.
            ScreenWidth = screanWidth;
            ScreenHeight = screenHeight;

            // Store the base view matrix.
            BaseViewMatrix = baseViewMatrix;

            // Create the font object.
            Font = new Font();

            // Initialize the font object.
            if (!Font.Initialize(device, "fontdata.txt", "font.dds"))
                return false;

            // Create the font shader object.
            FontShader = new FontShader();

            // Initialize the font shader object.
            if (!FontShader.Initialize(device, windowHandle))
                return false;

            // Initialize the first sentence.
            if (!InitializeSentence(out sentences[0], 32, device))
                return false;

            // Now update the sentence vertex buffer with the new string information.
            if (!UpdateSentece(ref sentences[0], "Render Count:", 20, 20, 1, 1, 1, deviceContext))
                return false;

            return true;
        }
Example #23
0
 public TextureConverter(uint[] data, int width, byte? alphaTolerance,
     float? hullTolerance, bool? holeDetection, bool? multipartDetection,
     bool? pixelOffsetOptimization, Matrix? transform)
 {
     Initialize(data, width, alphaTolerance, hullTolerance, holeDetection,
         multipartDetection, pixelOffsetOptimization, transform);
 }
Example #24
0
        public void Render(DeviceContext dc, EffectPass pass, Matrix view, Matrix proj)
        {
            var position = Particle.Position;
            Model.World = Matrix.Translation(position);

            Model.Draw(dc, pass, view, proj);
        }
Example #25
0
 /// <summary>	
 ///  Gets a transform that maps abstract coordinates to DIPs. 	
 /// </summary>	
 /// <param name="clientDrawingContext">The drawing context passed to <see cref="SharpDX.DirectWrite.TextLayout.Draw_"/>.</param>
 /// <returns>a structure which has transform information for  pixel snapping.</returns>
 /// <unmanaged>HRESULT GetCurrentTransform([None] void* clientDrawingContext,[Out] DWRITE_MATRIX* transform)</unmanaged>
 public virtual Matrix GetCurrentTransform(object clientDrawingContext)
 {
     Matrix matrix = new Matrix();
     matrix.M11 = 1;
     matrix.M22 = 1;
     return matrix;
 }
Example #26
0
        public override void DrawBox(ref Vector3 bbMin, ref Vector3 bbMax, ref Matrix trans, Color color)
        {
            var p1 = Vector3.TransformCoordinate(bbMin, trans);
            var p2 = Vector3.TransformCoordinate(new Vector3(bbMax.X, bbMin.Y, bbMin.Z), trans);
            var p3 = Vector3.TransformCoordinate(new Vector3(bbMax.X, bbMax.Y, bbMin.Z), trans);
            var p4 = Vector3.TransformCoordinate(new Vector3(bbMin.X, bbMax.Y, bbMin.Z), trans);
            var p5 = Vector3.TransformCoordinate(new Vector3(bbMin.X, bbMin.Y, bbMax.Z), trans);
            var p6 = Vector3.TransformCoordinate(new Vector3(bbMax.X, bbMin.Y, bbMax.Z), trans);
            var p7 = Vector3.TransformCoordinate(bbMax, trans);
            var p8 = Vector3.TransformCoordinate(new Vector3(bbMin.X, bbMax.Y, bbMax.Z), trans);

            int intColor = ColorToInt(ref color);
            lines.Add(new PositionColored(ref p1, intColor)); lines.Add(new PositionColored(ref p2, intColor));
            lines.Add(new PositionColored(ref p2, intColor)); lines.Add(new PositionColored(ref p3, intColor));
            lines.Add(new PositionColored(ref p3, intColor)); lines.Add(new PositionColored(ref p4, intColor));
            lines.Add(new PositionColored(ref p4, intColor)); lines.Add(new PositionColored(ref p1, intColor));

            lines.Add(new PositionColored(ref p1, intColor)); lines.Add(new PositionColored(ref p5, intColor));
            lines.Add(new PositionColored(ref p2, intColor)); lines.Add(new PositionColored(ref p6, intColor));
            lines.Add(new PositionColored(ref p3, intColor)); lines.Add(new PositionColored(ref p7, intColor));
            lines.Add(new PositionColored(ref p4, intColor)); lines.Add(new PositionColored(ref p8, intColor));

            lines.Add(new PositionColored(ref p5, intColor)); lines.Add(new PositionColored(ref p6, intColor));
            lines.Add(new PositionColored(ref p6, intColor)); lines.Add(new PositionColored(ref p7, intColor));
            lines.Add(new PositionColored(ref p7, intColor)); lines.Add(new PositionColored(ref p8, intColor));
            lines.Add(new PositionColored(ref p8, intColor)); lines.Add(new PositionColored(ref p5, intColor));
        }
 /// <summary>
 /// Crear un modelo adjunto a un hueso
 /// </summary>
 /// <param name="model">Modelo a adjuntar</param>
 /// <param name="bone">Hueso al cual adjuntarse</param>
 /// <param name="offset">Offset desde el cual el modelo sigue al hueso</param>
 public TgcSkeletalBoneAttach(TgcMesh mesh, TgcSkeletalBone bone, Matrix offset)
 {
     this.bone = bone;
     this.mesh = mesh;
     this.offset = offset;
     updateValues();
 }
 public SyntheticData()
 {
     state = new Matrix<float>(4, 1);
     state[0, 0] = Cursor.Position.X; // x-pos
     state[1, 0] = Cursor.Position.Y; // y-pos
     state[2, 0] = 0f; // x-velocity
     state[3, 0] = 0f; // y-velocity
     transitionMatrix = new Matrix<float>(new float[,]
         {
             {1, 0, 1, 0},
             {0, 1, 0, 1},
             {0, 0, 1, 0},
             {0, 0, 0, 1}
         });
     measurementMatrix = new Matrix<float>(new float[,]
         {
             { 1, 0, 0, 0 },
             { 0, 1, 0, 0 }
         });
     measurementMatrix.SetIdentity();
     processNoise = new Matrix<float>(4, 4);
     processNoise.SetIdentity(new MCvScalar(1.0e-4));
     measurementNoise = new Matrix<float>(2, 2);
     measurementNoise.SetIdentity(new MCvScalar(1.5e-1));
     errorCovariancePost = new Matrix<float>(4, 4);
     errorCovariancePost.SetIdentity();
 }
Example #29
0
		public MinkowskiSumShape(ConvexShape shapeA, ConvexShape shapeB)
		{
			_shapeA = shapeA;
			_shapeB = shapeB;
			_transformA = Matrix.Identity;
			_transformB = Matrix.Identity;
		}
 public void Reset()
 {
     _matrix = _matrixInverse = Matrix.Identity;
     _rotation = new Vector3();
     _scale = new Vector3(1.5f);
     _z = 0.0f;
 }